
Web Privacy Beyond Extensions:
New Browsers Are Pursuing

Deep Privacy Protections
Peter Snyder <pes@brave.com> 

Privacy Researcher at Brave Software

mailto:pes@brave.com

In a slide…

• Web privacy is a mess.

• Privacy activists and researchers are limited by the
complexity of modern browsers.

• New browser vendors are eager to work with activists to
deploy their work.

Outline

1. Background 
Extension focus in practical privacy tools

2. Present 
Privacy improvements require deep browser modifications

3. Next Steps 
Call to action, how to keep improving

Outline

1. Background 
Extension focus in practical privacy tools

2. Present 
Privacy improvements require deep browser modifications

3. Next Steps 
Call to action, how to keep improving

uBlock
PrivacyBadger 

Disconnect 
AdBlock Plus

Browsers are Complicated
Pr

iv
ac

y
co

nc
er

n

Browser maintenance experience

Chrome
Edge / IE

Firefox
Safari

uBlock
PrivacyBadger 

Disconnect 
AdBlock Plus

Extensions as a
Compromise

Pr
iv

ac
y

co
nc

er
n

Browser maintenance experience

Chrome
Edge / IE

Firefox
Safari

Extensions Runtime 
modifications

Privacy and 
Browser Extensions

• Successes! 
uBlock Origin, HTTPS Everywhere, Ghostery, 
Disconnect, Privacy Badger, EasyList / EasyPrivacy, etc…

• Appealing 
Easy(er) to build, easy to share

• Popular 
Hundreds of thousands of extensions, Millions of users

👍

Browser Extension
Limitations

• Limited Capabilities 
Networking, request modification, rendering, layout,
image processing, JS engine, etc…

• Security and Privacy 
Possibly giving capabilities to malicious parties

• Performance 
Limited to JS, secondary access

👎

uBlock
PrivacyBadger 

Disconnect 
AdBlock Plus

Extensions vs Runtime
Pr

iv
ac

y
co

nc
er

n

Browser maintenance experience

Chrome
Edge / IE

Firefox
Safari

Extensions Runtime 
modifications

uBlock
PrivacyBadger 

Disconnect 
AdBlock Plus

Under Explored Space
Pr

iv
ac

y
co

nc
er

n

Browser maintenance experience

Chrome
Edge / IE

Firefox
Safari

Extensions Runtime 
modifications

?

Outline

1. Background 
Extension focus in practical privacy tools

2. Present 
Privacy improvements require deep browser modifications

3. Next Steps 
Call to action, how to keep improving

uBlock
PrivacyBadger 

Disconnect 
AdBlock Plus

Under Explored Space
Pr

iv
ac

y
co

nc
er

n

Browser maintenance experience

Chrome
Edge / IE

Firefox
Safari

Extensions Runtime 
modifications

Runtime Privacy
Improvements

• AdGraph 
Client-side, ML, graph-based tracking detection

• SpeedReader 
Privacy enhancing content extraction 
(i.e. “aggressive reader mode”)

Runtime Privacy
Improvements

• AdGraph 
Client-side, ML, graph-based tracking detection

• SpeedReader 
Privacy enhancing content extraction 
(i.e. “aggressive reader mode”)

A�G����: A Machine Learning Approach to
Automatic and E�ective Adblocking

Umar Iqbal
The University of Iowa

Zubair Sha�q
The University of Iowa

Peter Snyder
Brave Software

Shitong Zhu
University of California, Riverside

Zhiyun Qian
University of California, Riverside

Benjamin Livshits
Brave Software

Imperial College London

ABSTRACT
Filter lists are widely deployed by adblockers to block ads and other
forms of undesirable content in web browsers. However, these �lter
lists are manually curated based on informal crowdsourced feed-
back, which brings with it a signi�cant number of maintenance
challenges. To address these challenges, we propose a machine
learning approach for automatic and e�ective adblocking called
A�G����. Our approach relies on information obtained from mul-
tiple layers of the web stack (HTML, HTTP, and JavaScript) to train
a machine learning classi�er to block ads and trackers. Our evalua-
tion on Alexa top-10K websites shows that A�G���� automatically
and e�ectively blocks ads and trackers with 97.7% accuracy. Our
manual analysis shows that A�G���� has better recall than �lter
lists, it blocks 16%more ads and trackers with 65% accuracy. We also
show that A�G���� is fairly robust against adversarial obfuscation
by publishers and advertisers that bypass �lter lists.

1 INTRODUCTION
Background. Adblocking deployment has been steadily increas-
ing over the last several years. According to PageFair, adblockers
are used on more than 600 million devices globally as of December
2016 [15, 24, 26]. There are several reasons that have led to many
users installing adblockers like Adblock Plus and uBlock Origin.
First, many websites show �ashy and intrusive ads that degrade
user experience [25, 27]. Second, online advertising has been repeat-
edly abused by hackers to serve malware (so-called malvertising)
[44, 48, 54] and more recently cryptojacking, where attackers hijack
computers to mine cryptocurrencies [37]. Third, online behavioral
advertising has incentivized a nefarious ecosystem of online track-
ers and data brokers that infringes on user privacy [28, 36]. Most
adblockers not only block ads, but also block associated malware
and trackers. Thus, in addition to instantly improving user expe-
rience, adblocking is a valuable security and privacy enhancing
technology that protects users against these threats.
Motivation. Perhaps unsurprisingly, online publishers and ad-
vertisers have started to retaliate against adblockers. First, many
publishers deploy anti-adblockers, which detect adblockers and
force users to disable their adblockers. This arms race between ad-
blockers and anti-adblockers has been extensively studied [45, 46].
Researchers have proposed approaches to detect anti-adblocking

, ,
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

scripts [40, 49, 60], which can then be blocked by adblockers. Second,
some advertisers have started to manipulate the delivery of their
ads to bypass �ler lists used by adblockers. For example, Facebook
recently obfuscated signatures of ad elements that were used by
�lter lists to block ads. Adblockers, in response, quickly identi�ed
new signatures to block Facebook ads. This prompted a few back
and forth actions, with Facebook changing their website to remove
ad signatures, and adblockers responding with new signatures [52].
Limitations of Filter Lists. While adblockers are able to block
Facebook ads (for now), Facebook’s whack-a-mole strategy points
to two fundamental limitations of adblockers. First, adblockers use
manually curated �lter lists to block ads and trackers based on
informally crowdsourced feedback from the adblocking community.
This manual process of �lter list maintenance is inherently slow
and error-prone. When new websites are created, or existing web-
sites make changes, it takes adblocking community some time to
catch up by updating the �lter lists [1]. This is similar to other areas
of system security, such as updating anti-virus signatures [31, 42].
Second, rules de�ned in these �lter lists are fairly simple HTTP and
HTML signatures that are easy to defeat for �nancially motivated
publishers and advertisers. Researchers have shown that random-
ization techniques, where publishers constantly mutate their web
content (e.g., URLs, element ID, style class name), can easily defeat
signatures used by adblockers [51]. Thus, publishers can easily, and
continuously, engage in the back and forth with adblockers and
bypass their �ltering rules. It would be prohibitively challenging
for the adblocking community to keep up in such an adversarial
environment at scale. In fact, a few third-party ad “unblocking”
services claim to serve unblockable ads using the aforementioned
obfuscation techniques [14, 32, 58].
Proposed Approach. In this paper, we aim to address these chal-
lenges by developing an automatic and e�ective adblocking ap-
proach. We propose A�G����, which alleviates the need for man-
ual �lter list curation by using machine learning to automatically
identify e�ective (both accurate and robust) patterns in the page
load process to block ads and trackers. Our key idea is to construct
a multi-layer graph representation that incorporates �ne-grained
HTTP, HTML, and JavaScript information during page load. Com-
bining information across the di�erent layers of the web stack
allows us to capture tell-tale signs of ads and trackers. We extract
a variety of structural (degree and connectivity) and content (do-
main and keyword) features from the constructed graph to train a
supervised machine learning model to detect ads and trackers.

1

ar
X

iv
:1

80
5.

09
15

5v
1

 [c
s.C

Y
]

22
 M

ay
 2

01
8

Current Tracking Blocking

• Extremely useful!

• Uses well known, targeted
approaches

• Vulnerable to practical
countermeasures

• We see increasing evasion

• Two typical approaches…

URL Based Blocking

• Representative Extension 
AdBlock Plus + EasyPrivacy

• Approach 
1. Identify URLs that trackers come from 
2. Build rules to instruct the browser to ignore these URLs

• Example 
1. Notice: https://example.org/tracking.js 
2. Block: */tracking.js

https://example.org/tracking.js

URL Based Evasions

• Rotate Domains 
- Domain generation algorithms (DGA) 
- Host on CDNs

• Move to First Party 
Sites host local copies of tracking code

• Compose with “benign” code 
- Concatenate into one single file 
- Magnification / packing / browserify / require.js / etc.

Behavior Based Blocking
• Representative Extension 

PrivacyBadger

• Approach 
1. Look for code that does suspicious things 
2. Block or restrict similar code

• Example 
1. Notice script from tracker.com uses Canvas and  
 WebGL oddly 
2. Prevent all code from tracker.com from accessing any  
 privacy sensitive functionality

http://tracker.com
http://tracker.com

Behavior Based Evasions
• Rotate Domains 

- Domain generation algorithms (DGA) 
- Host on CDNs

• Split Suspicious Activity Across Parties 
Avoid detection thresholds by distributing activity

• Evade Attribution 
- eval 
- new Function() 
- Promise.then() 
- etc…

AdGraph Alternative

• Blocking tracking resources 
JS, tracking pixels, iFrames…

• Deep browser instrumentation 
- Network: requests made during page execution 
- Layout: page structure and modifications 
- JavaScript: attribute above to responsible code

• Block based on context 
ML classification based on above described context

Common JS Example

1. Script element with inline code, that…

2. Appends a script element after itself, with remote script,
that…

3. Reads document cookies (and other FP elements),
creates an adjacent image, and then…

4. Fetches images from unknown URLs

AdGraph Example

AdGraph Example
Script 
Elm

AdGraph Example
Script 
Elm

Script 
Elm

Append Element:  
<script>

AdGraph Example
Script 
Elm

Attribute Modification:  
src=<url>

Script 
Elm

Append Element:  
<script>

AdGraph Example
Script 
Elm

Script 
Resource

Fetch: 
<url>

Attribute Modification:  
src=<url>

Script 
Elm

Append Element:  
<script>

AdGraph Example
Script 
Elm

Script 
Resource

Fetch: 
<url>

Image 
Elm

Append Element:  

Attribute Modification:  
src=<url>

Script 
Elm

Append Element:  
<script>

AdGraph Example
Script 
Elm

Script 
Resource

Fetch: 
<url>

Attribute Modification:  
src=<url> Image 

Elm

Append Element:  

Attribute Modification:  
src=<url>

Script 
Elm

Append Element:  
<script>

AdGraph Example
Script 
Elm

Script 
Resource

Fetch: 
<url>

Attribute Modification:  
src=<url> Image

Resource
Fetch: 
<url>

Image 
Elm

Append Element:  

Attribute Modification:  
src=<url>

Script 
Elm

Append Element:  
<script>

AdGraph Example
Script 
Elm

Script 
Resource

Fetch: 
<url>

Attribute Modification:  
src=<url> Image

Resource
Fetch: 
<url>

Image 
Elm

Append Element:  

Attribute Modification:  
src=<url>

Script 
Elm

Append Element:  
<script>

Classification 
Information

AdGraph Example
Script 
Elm

Script 
Resource

Fetch: 
<url>

Attribute Modification:  
src=<url> Image

Resource
Fetch: 
<url>

Image 
Elm

Append Element:  

Attribute Modification:  
src=<url>

Script 
Elm

Append Element:  
<script>

Classification 
Information

AdGraph Example
Script 
Elm

Script 
Resource

Fetch: 
<url>

Attribute Modification:  
src=<url> Image

Resource
Fetch: 
<url>

Image 
Elm

Append Element:  

Attribute Modification:  
src=<url>

Script 
Elm

Append Element:  
<script>

AdGraph Results
• High accuracy 

> 95% compared to current, human approaches

• Strong privacy protections 
Identifies tracking resources missed by current tools

• High performance 
As fast or faster than current approaches (and default
Chromium!)

• Not limited to lists  
Can adapt as trackers adapt

Not Possible with
Extensions

• Information Breath 
Needed information not
available to browser
extensions

• Information Depth 
JS information not available
to other browsers!

• Performance 
Blocking ML classifier
benefits from C++
implementation

Runtime Privacy
Improvements

• AdGraph 
Client-side, ML, graph-based tracking detection

• SpeedReader 
Privacy enhancing content extraction 
(i.e. “aggressive reader mode”)

SpeedReader: Reader Mode Made Fast and Private
Mohammad Ghasemisharif
University of Illinois at Chicago

mghas2@uic.edu

Peter Snyder
Brave Software
pes@brave.com

Andrius Aucinas
Brave Software

aaucinas@brave.com

Benjamin Livshits
Brave Software / Imperial College London

ben@brave.com

ABSTRACT
Most popular web browsers include “reader modes” that improve
the user experience by removing un-useful page elements. Reader
modes reformat the page to hide elements that are not related to the
page’s main content. Such page elements include site navigation,
advertising related videos and images, and most JavaScript. The
intended end result is that users can enjoy the content they are
interested in, without distraction.

In this work, we consider whether the “reader mode” can be
widened to also provide performance and privacy improvements.
Instead of its use as a post-render feature to clean up the clutter on a
page we propose SpeedReader as an alternative multistep pipeline
that is part of the rendering pipeline. Once the tool decides during
the initial phase of a page load that a page is suitable for reader
mode use, it directly applies document tree translation before the
page is rendered.

Based on our measurements, we believe that SpeedReader can
be continuously enabled in order to drastically improve end-user
experience, especially on slower mobile connections. Combined
with our approach to predicting which pages should be rendered in
reader mode with 91% accuracy, it achieves drastic speedups and
bandwidth reductions of up to 27⇥ and 84⇥ respectively on average.
We further �nd that our novel “reader mode” approach brings
with it signi�cant privacy improvements to users. Our approach
e�ectively removes all commonly recognized trackers, issuing 115
fewer requests to third parties, and interacts with 64 fewer trackers
on average, on transformed pages.

1 INTRODUCTION
“Web bloat” is a colloquial term that describes the trend in websites
to accumulate size and visual complexity over time. The phenom-
ena has been measured in many dimensions, including total page
size [7], page load time [5, 43, 44], memory needed [29], number of
network requests [16, 27], amount of scripts executed [25, 33, 36, 38]
and third parties contacted [24, 25, 27]. This work suggests that
growth in page size and complexity is outpacing improvements in
device hardware. All of this has a predictably negative impact on
user experience.

Web users and browser vendors have reacted to this “bloat” in a
variety of ways, all partially helpful, but with signi�cant downsides.

Ad and tracking blockers are a popular and useful tool for reduc-
ing the size complexity of sites. Prior work has shown that these
tools can be e�ective in reducing privacy leaks [30], network use,
and extend device memory life. Such tools are inherently limited
in the scope of improvements they can achieve. While these lists

are large [41], they are small as a proportion of all URLs on the
web. Similarly, while these lists are updated often, they are updated
slowly compared to URL updates on the web.

Similarly, “reader mode” tools, provided in many popular
browsers and browser extensions, are an e�ort to reduce the grow-
ing visual complexity of web sites. Such tools attempt to extract
the subset of page content useful to users, and remove advertising,
animations, boiler plate code, and other non-core content. Current
“reader modes” do not provide the user with resource savings since
the referenced resources have already been fetched and rendered.
The growth and popularity of such tools suggest they are useful to
browser users, looking to address the problem of page clutter and
visual “bloat”.

In this work, we propose a novel strategy called SpeedReader
for dealing with resource and bloat on websites. Our technique
provides a user experience similar to existing “reader mode” tools,
but with network, performance, and privacy improvements that
exceed existing ad and tracking blocking tools, on a signi�cant
portion of websites. Signi�cantly, SpeedReader di�ers from exist-
ing deployed reader mode tools by operating before page rendering,
which allows it to determine which resources are needed for the
page’s core content before fetching.
How we achieve speedups. SpeedReader achieves its perfor-
mance improvements through a two-step pipeline:

(1) SpeedReader uses a classi�er to determine whether there
is a readable subset of the initial, fetched page HTML. This
classi�er is trained on a labeled corpus of 2,833 websites, and
is described in detail in Section 3, and determines whether a
page can be display in reader mode with 91% accuracy.

(2) If the classi�er has determined that the page is readable,
SpeedReader extracts the readable subset of document be-
fore rendering, using a variety of heuristics developed in prior
research [23] and browser vendors [9, 22], and passes the
simpli�ed, reader mode document to the browser’s render
layer. This tree translation step is described in Section 4.

Deployment. Combined with a highly accurate classi�er of “read-
able” pages, the drastic improvements in performance, reduction in
bandwidth use and elimination of trackers in reader mode make
the approach practical for continuous use. We therefore propose
SpeedReader as a sticky feature that a user can toggle to be always
on. This approximates the experience of using an e-book reader,
but with strengths of content availability on the web. It is also a
suitable strategy for content prerendering or prefetching that could
be implemented by web browser vendors, automatically delivering
graceful performance degradation in poor connectivity areas or on

ar
X

iv
:1

81
1.

03
66

1v
1

 [c
s.I

R
]

8
N

ov
 2

01
8

SpeedReader
• Prevent tracking resources 

JS, tracking pixels, iFrames…

• Most of a page isn’t immediately useful 
- Boilerplate: navigation, you might like… 
- Third party ads: often undesirable, offensive, or both 
- JavaScript: animations and distractions

• Extract good content, don’t block bad content 
Focus on identifying the valuable parts of the page, not
the harmful ones

Existing Reader Modes

Server Browser Render Page
Extract 

Main Text and
Image

Present Reader
Mode Version

Ads
Images Videos

JS

Main
Image

SpeedReader

Server Browser
Determine if

Initial HTML is
Readable Extract 

Main Text and
Image from

HTML

Present Reader
Mode Version

Main
Image

Main
Image

If Yes…

If No…

Display as
normal

SpeedReader Results

Comparison of SpeedReader to standard browsing on a large sample of websites.
3rd Party 

(Avg)
3rd Party 
(Median)

Scripts 
(Avg)

Scripts 
(Median)

Ads and
Trackers 

(Avg)

Ads and
Trackers 
(Median)

Default 117 63 83 51 63 24

SpeedReader 1 1 0 0 0 0

Not Possible with
Extensions

• Access Restrictions 
Most browser’s don’t allow extensions to modify pages

• Performance 
ML classifier benefits from C++ implementation

Outline

1. Background 
Extension focus in practical privacy tools

2. Present 
Privacy improvements require deep browser modifications

3. Next Steps 
Call to action, how to keep improving

uBlock
PrivacyBadger 

Disconnect 
AdBlock Plus

Unclaimed Space
Pr

iv
ac

y
co

nc
er

n

Browser maintenance experience

Chrome
Edge / IE

Firefox
Safari

Extensions Runtime 
modifications

Future privacy
protections

Better Privacy is Possible
• New Browser Vendors 

The “big four” aren’t the only game in town anymore

• Many New Browsers are Privacy Focused 
Privacy as top-level goal, willing to be aggressive

• Eager to Collaborate 
The new browsers are willing and interested to develop and
maintain ambitious privacy protecting browser changes.

• Reach Out! 
Peter Snyder, Privacy Researcher 
pes@brave.com – @pes10k

