Online Tracking, What Can Be Done About it, and Who’s Doing it

Pete Snyder
Senior Privacy Researcher, Director of Privacy
pes@brave.com
Hi, I’m Pete👋

- Grew up in Chicago
 …actual Chicago

- Law school -> freelance web stuff
 Started: Anchorage, AK
 Ended: Judge Judy Show invitation

- University of Illinois at Chicago
Me at Brave

- Research at Brave
 ...privacy, blocking, reliability

- Co-Chair of PING
 Privacy committee on W3C

- Research <-> Engineering
 Web compat, filter lists, etc.

- Academic <-> Industry Collaborations
Brave in a Slide

- Privacy focused
- Alternative web funding model
 Fix incentive problems
- Research + Engineering
- Not just a browser
 - search.brave.com
 - talk.brave.com
 - VPN
 - more coming…
Overview

- **Why Privacy Matters**
 A sloppy manifesto

- **Defining Tracking**
 Abstracting the problem

- **Tracking in Practice**
 Methods and defenses

- **Privacy Beyond Tracking**
 Other issues and concerns
Overview

● Why Privacy Matters
 A sloppy manifesto

● Defining Tracking
 Abstracting the problem

● Tracking in Practice
 Methods and defenses

● Privacy Beyond Tracking
 Other issues and concerns
Why Does Tracking Exist?
Captaincy is wrong

Root

It would be a road to ruin

Graeme Swann

Oh, suits you Shawn

O'Sullivan in dust-up

Chalk of shame

£30m CUP DEAL

Pep gets Klopped

McDonald's

RECLAIM YOUR MANLISS

BEEN READING THE GOSSIP COLUMNS

TODAY MORNING

SAUSAGE & BACON SANDWICH
100% FREE MAGAZINE SUBSCRIPTIONS!
Welcome the The "First" Banner Ad

Yes, this site is supposed to look this way. After all, this is what most web pages looked like back on October 27, 1994 -- the day that Wired Magazine flipped the switch on its first website, hotwired.com, starting a revolution in web content and advertising that still reverberates today.

This site is dedicated to showing off one of the ads that ran on that site. No, it wasn't the "first" as there were a handful of other ads that ran on various sections of hotwired.com. This site is also here to tell the story of how that ad came to be, how it succeeded beyond anything we had imagined, and how we tried to set an example for how corporations could communicate with their audiences.

This site launched on October 27, 2014. It is being constantly updated, so please check back again soon for more. In the meantime, get started by clicking your mouse in the banner ad above and explore these other options:
Gratuitous use of frames is a common mistake of web designers.

Many older browsers do not support frames. They disrupt the flow of the website and can be difficult to anticipate where a page may appear when a link is clicked. Click here for an example of a frames page which is opening in the wrong window. Use your browser's 'Back' button to escape.

Check out these links to websites whose opinions about frames is self-evident:

The "I Hate Frames" Frames Page
Another I Hate Frames Page
The International I Hate Frames Club
Why Frames Suck (Most of the Time)

Welcome to the World's Worst Website!

This web was designed to graphically demonstrate the most common mistakes made by new Web Page designers.

Where am I and where are the links to other pages?

An easy to use navigation structure is essential to any well designed website! Important information should never be more than 2 clicks away.

As you can see, this text is difficult to read. There needs to more contrast between the background color and the text color. Here's another example of a poor choice of a background, text color and size.

Keep your backgrounds simple. White or light colors usually work best. Your background should not compete with the content of the page for the users attention. If you would like to use a background picture, select a picture that uses muted colors or format your picture as a watermark. Select text colors which will contrast well with the background picture.

Constantly running animations can be distracting when used excessively.
Identify “expensive” people here

Pay a little to advertise to them here
Summarizing: Why Does Tracking Matter

- Incompatible with dignity
- Power and control
- Transfers wealth from value-creators to attention-attractors
Overview

● Why Privacy Matters
 A sloppy manifesto

● Defining Tracking
 Abstracting the problem

● Tracking in Practice
 Methods and defenses

● Privacy Beyond Tracking
 Other issues and concerns
Definitions

- **Website:** eTLD+1 (determined by public suffix list)
 - e.g., brave.com != mozilla.org
 - e.g., talk.brave.com == search.brave.com
 - e.g., ted.github.io != betty.github.io

- **Origin:** The full DNS host name serving a site

- **First-party:** Site of the top level document

- **Third-party:** any other site
Definitions (more)

- **DOM Storage**: Explicit storage APIs
 e.g., cookies, localStorage, IndexDB

- **Network State**: All other storage
 e.g., caches (v8, DNS, HTTP)
 e.g., Header instructions (HSTS, ALT-SRV, etc)

- **Online Tracking**
 Its trickier…
A Rough Definition of Tracking

- **Linking activities...**
 e.g., being “followed”

- **across boundaries...**
 e.g., temporal, geographic, conceptual

- **In a way not expected or desired.**
 e.g., ignorance or non-consent
Tracking in Context

- Tracking
- Misinformation
- Hurassment
- Cyber Crime
A Rough Definition of Tracking

- Linking activities... e.g., being “followed”
- across boundaries... e.g., temporal, geographic, conceptual
- In a way not expected or desired. e.g., ignorance or non-consent
Question One

some-site.example → One day... → other-site.example
Question One

some-site.example

One day…

other-site.example

Not linking
Question Two

One day…

some-site.example

some-site.example
Question Two

one-day...

some-site.example

Not linking

some-site.example
Question Three

One day...

some-site.example —> some-site.example
Question Three

One day...

some-site.example

Linking (first-party)

some-site.example
Question Four

One day…

tracker.example

some-site.example

One day…

tracker.example

other-site.example
Question Four

One day...

Not linking
Question Five

One day…
Question Five

One day…

Linking (third-party)
Tracking: Linking...

- **Tying behaviors to same identity**
 Could be pseudonymous, or a “real world” identity

- **Probabilistic or deterministic**
 For some definition of “probable enough”
A Rough Definition of Tracking

- Linking activities...
 e.g., being “followed”

- across boundaries...
 e.g., temporal, geographic, conceptual

- In a way not expected or desired.
 e.g., ignorance or non-consent
Tracking: …across boundaries…

- **Organizational boundaries**
 e.g., eTLD+1, origin, “first-party set”

- **Temporal boundaries**
 e.g., tying something done last year to something done today

- **Profile boundaries**
 e.g., private browsing, different browsers, accounts
A Rough Definition of Tracking

- Linking activities...
 e.g., being “followed”

- across boundaries...
 e.g., temporal, geographic, conceptual

- In a way not expected or desired.
 e.g., ignorance or non-consent
Tracking: ...expectations

- **Expectations differ across platforms**
 Facebook inapp browser vs Tor Browser Bundle

- **Expectations differ across people’s expertise**
 e.g., my dad vs Dworkin

- **Expectations differ across backgrounds**
 e.g., outlook.com vs microsoft.com vs github.com

- **Consent is (sometimes) fuzzy**
 Terms of service ← Terms of service → Storage Access API
A Rough Definition of Tracking

- Linking activities...
 e.g., being “followed”

- across boundaries...
 e.g., temporal, geographic, conceptual

- In a way not expected or desired.
 e.g., ignorance or non-consent
Overview

- **Why Privacy Matters**
 A sloppy manifesto

- **Defining Tracking**
 Abstracting the problem

- **Tracking in Practice**
 Methods and defenses

- **Privacy Beyond Tracking**
 Other issues and concerns
Tracking Techniques

- Third-party DOM storage
- Network state
- Bounce tracking
- Browser fingerprinting
- IP address
- Personal identifiers
Tracking Techniques

- Third-party DOM storage
- Network state
- Bounce tracking
- Browser fingerprinting
- IP address
- Personal identifiers
Third-party DOM storage

some-site.example

/pixel.gif
cookie=null

cookie=abc

tracker.example
Third-party DOM storage: cookies

some-site.example

cookie=abc

/pixel.gif

cookie=null

tracker.example

/cookie=abc

other-site.example
Third-party DOM storage: cookies

/\pixel.gif
cookie=null

some-site.example

cookie=abc

tracker.example

/\pixel.gif
cookie=abc

other-site.example
Third-party DOM storage: iframe

```javascript
<iframe src='//tracker.example'>
const LS = localStorage
if (LS['id']) {
  // I re-identified a person
} else {
  // new person, assigning ID
  LS['id'] = Math.random()
}
fetch(`/record?id=${LS['id']}`)
</iframe>
```
Third-party DOM storage: iframe

```javascript
const LS = localStorage

if (LS['id']) {
    // I re-identified a person
} else {
    // new person, assigning ID
    LS['id'] = Math.random()
}

fetch(`/record?id=${LS['id']}`)
</iframe>
```
Third-party DOM storage: iframe

```javascript
<iframe src='//tracker.example'>
const LS = localStorage
if (LS['id']) {
    // I re-identified a person
} else {
    // new person, assigning ID
    LS['id'] = Math.random()
}
fetch(`/record?id=${LS['id']}`)
</iframe>
```
Third-party DOM storage: partitioning

- Third-party storage is not shared across sites
- Sometimes called “dual-keying”
- Previous:
 \[\text{storage}_\text{data} = \text{browser}_\text{storage}[<\text{requested eTLD}+1>] \]
- Partitioning:
 \[\text{storage}_\text{data} = \text{browser}_\text{storage}[<\text{first-party eTLD}+1>][<\text{requested eTLD}+1>] \]
Third-party DOM storage: partitioning
Third-party DOM storage: partitioning

some-site.example

/tracker.example

cookie=abc

cookie=null

tracker.example

/tracker.example

cookie=123

cookie=null

other-site.example
Third-party DOM storage: Defenses

<table>
<thead>
<tr>
<th></th>
<th>Chrome</th>
<th>Safari</th>
<th>Edge</th>
<th>Firefox</th>
<th>Brave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block third-party cookies</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Partition storage</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Ephemeral partitions</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>List based defenses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
</tr>
</tbody>
</table>

[55]
Tracking Techniques

- Third-party DOM storage
- Network state
- Bounce tracking
- Browser fingerprinting
- IP address
- Personal identifiers
Network State Example: HTTP Cache

- Browsers cache things for speed. Images, JavaScript, etc.
- Caches are generally unpartitioned.
- Anything unpartitioned can be a linking key.
HTTP Cache Tracking

- /pixel/#.gif?action={set, read}
- action=set: 50% return pixel: 50% 404
- action=read: 100% 404
HTTP Cache Tracking

some-site.example

/tracker.example

50% a pixel, 50% 404
HTTP Cache Tracking

const identifier = []
for (let i = 0; i < 32; i += 1) {
 try {
 const url = `/pixel/${i}.gif?action=read`
 await fetch(url)
 // We hit the cache
 identifier[i] = 1
 } catch (_) {
 // We missed the cache
 identifier[i] = 0
 }
}
// identifier is now a unique 32 bits
HTTP Strict Transport Security (HSTS)

- Website Says “only HTTPS, forever”
 e.g. persistent storage

- Automatic Upgrade
 http://example.org -> https://example.org

- How to leverage?
HSTS Tracking

- example.org
- a.example.org
- b.example.org
- a.a.example.org
- b.a.example.org
Network state: Defenses

<table>
<thead>
<tr>
<th></th>
<th>Chrome</th>
<th>Safari</th>
<th>Edge</th>
<th>Firefox</th>
<th>Brave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition network state</td>
<td>🔄</td>
<td>⏯</td>
<td>⬗</td>
<td>🟢</td>
<td>⏯</td>
</tr>
<tr>
<td>List based defenses</td>
<td>⏯</td>
<td>⬗</td>
<td>⬗</td>
<td>⏯</td>
<td>⏯</td>
</tr>
</tbody>
</table>
Tracking Techniques

- Third-party DOM storage
- Network state
- Bounce tracking
- Browser fingerprinting
- IP address
- Personal identifiers
Bounce Tracking

- Response to partitioning
- Third parties use first-parties to track
- Growing in importance as partitioning is more common
Pre-partitioning

1. Record Page View
 cookie=abc

2. Navigate to new page

3. Record Page View
 cookie=abc

some-site.example → tracker.example → other-site.example
Storage partitioning

1. Record Page View
 cookie=abc

2. Navigate to new page

3. Record Page View
 cookie=123

some-site.example

tracker.example

tracker.example

other-site.example
Bounce tracking

1. Attempt to navigate

tracker.example

2. Record Page View
 cookie=123
 from=some-site...
 to=other-site...

some-site.example

other-site.example
Navigation tracking

1. Fetch tracking script
2. Attempt to navigate e.g., https://other-site.example
3. Tracker annotates URL with id=123 e.g., https://other-site.example?id=123
4. Fetch tracking script
5. Reads identifier from URL

some-site.example

tracker.example

other-site.example
Bounce and Navigation Tracking: Defenses

<table>
<thead>
<tr>
<th></th>
<th>Chrome</th>
<th>Safari</th>
<th>Edge</th>
<th>Firefox</th>
<th>Brave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Debounce”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warn user</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tracking Techniques

- Third-party DOM storage
- Network state
- Bounce tracking
- Browser fingerprinting
- IP address
- Personal identifiers
Fingerprinting, contrasted

- **Classic tracking**
 - Website stores an id on the client
 - The client returns the id to the server (cookie or JS)
 - The id is what allows re-identification
 - “Stateful”

- **Fingerprinting / passive tracking**
 - Website finds things different about each visitor
 - Tracker derives the identifier from minor browser differences
 - “Stateless”
Fingerprinting, how?

- Large number of semi-identifiers
 - Browser size
 - Extra fonts
 - Audio hardware
 - Video hardware
 - Installed plugins
 - Color depth

- Add the semi identification up...
All browser users
All browser users: 5 billion people

You
1 person in 5 billion
All browser users: 5 billion people

Firefox Users
All browser users: 5 billion people

Windows users
All browser users: 5 billion people

Sending DNT header
All browser users: 5 billion people

Using content blocker
All browser users: 5 billion people

You
1 person in 100
Fingerprinting, abstracted

- **Still needs a common value across boundaries**
 Sites, sessions, time, etc

- **Value needs to be unique**
 Otherwise it mixes you up with others

- **Value needs to be consistent**
 Otherwise it doesn’t (re)identify you
Possible Defenses

● Try to make browsers look similar
 Reduce the “bits” available to fingerprinters

● Try to block bad parties
 Keep the “bad folks” out

● Privacy budgets
 Only allow sites to do so much identifying, e.g., 10 bits but not more

● Randomization
 Make browser look intentionally different, within each boundary
Fingerprinting: Defenses

<table>
<thead>
<tr>
<th>Feature</th>
<th>Chrome</th>
<th>Safari</th>
<th>Edge</th>
<th>Firefox</th>
<th>Brave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted hardware</td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature selection / removal</td>
<td>🔁</td>
<td>✔️</td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>Block fingerprinters</td>
<td></td>
<td></td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Randomization</td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Tracking Techniques

- Third-party DOM storage
- Network state
- Bounce tracking
- Browser fingerprinting
- IP address
- Personal identifiers
IP Addresses are pretty unique!

- ...especially if you look for clusters
 The 3 ips you most commonly connect from is very unique

- IPv6 makes it a lot worse
 Obviously… :-(

- Four general approaches
 - Contracts / promises
 - proxies
 - mix nets
 - block bad parties
IP Addresses Defenses

<table>
<thead>
<tr>
<th></th>
<th>Chrome</th>
<th>Safari</th>
<th>Edge</th>
<th>Firefox</th>
<th>Brave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Websites promise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proxies</td>
<td></td>
<td>Private relay</td>
<td></td>
<td>Optional VPN</td>
<td>Optional VPN</td>
</tr>
<tr>
<td>Mix networks</td>
<td></td>
<td></td>
<td>Optional VPN</td>
<td></td>
<td>Optional Tor</td>
</tr>
<tr>
<td>Block bad parties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tracking Techniques

- Third-party DOM storage
- Network state
- Bounce tracking
- Browser fingerprinting
- IP address
- Personal identifiers
Personal Identifiers

- Names, email addresses, CCN, etc
 “old school”

- Can be combined with offline sources
 Credit agencies, public legal records, tax documents, etc

- Baked into the web
 Authentication, user accounts, etc
Partitioning to the Rescue (?)

- User holds the “true” value
e.g., true email address

- Browser holds a secret
e.g., secret = rand()

- Derive per site identities
e.g. hash(email + secret + eTLD+1) + @private-email.com

- Applicable to a range of identifiers
 Email, CCN, Crypto addresses
Personal Identifiers: Defenses

<table>
<thead>
<tr>
<th></th>
<th>Chrome</th>
<th>Safari</th>
<th>Edge</th>
<th>Firefox</th>
<th>Brave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition email</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Partition Web3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block scripts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>❌</td>
</tr>
</tbody>
</table>
Overview

- **Why Privacy Matters**
 A sloppy manifesto

- **Defining Tracking**
 Abstracting the problem

- **Tracking in Practice**
 Methods and defenses

- **Privacy Beyond Tracking**
 Other issues and concerns
Privacy is more than Absence of Tracking

- Browsers shouldn’t share information unless it’s helpful to user
 e.g., FLoC

- Browsers should serve users first and exclusively
 e.g., Reporting API, FLEDGE

- Browsers shouldn’t introduce capabilities that remove user choice
 WebBundles

- Browsers shouldn’t confuse users!
 First-party sets, SXG

- First-parties are suspect too...
Other privacy protections

- Governments increasing provide legal protections
 GDPR, CCPA, etc

- Browsers can help users assert their privacy rights
 e.g., GlobalPrivacyControl

- Authored by activists, academics, New York Times, DuckDuckGo, Brave
 Implemented in Brave and DDG

- Beware of conflating with “consent management” systems
A final plea…

- You are all plainly, amazingly smart people
- You’ll be able to (mostly) choose your job
- Privacy harms are particularly difficult to remediate
- Consider the privacy implications of a job before you take it
A final plea...

- You are all plainly, amazingly smart people
- You’ll be able to (mostly) choose your job
- Privacy harms are particularly difficult to remediate
- Consider the privacy implications of a job before you take it

Thanks!