
Pool-Party 

Exploiting Browser Resource Pools for Web Tracking 
 
 

Peter Snyder – Brave Software

Soroush Karami – University of Illinois at Chicago

Arthur Edelstein – Brave Software

Benjamin Livshits – Imperial College London

Hamed Haddadi – Brave Software, Imperial College London

1

Pool-Party Attacks in a Slide

2

● Browsers (mostly) try to prevent cross-site tracking 

● They partitioning resources by site (cookies, caches…) 

● Many implementation-resources are not partitioned 

● These can be exploited to enable cross-site track 

● Previously known possible, this work shows they’re practical

Overview
● Defining pool-party attacks 

What they are, how they differ from other privacy attacks, etc 

● Pool-party attacks in popular browsers 
Which browsers, which APIs, across which contexts 

● Measuring how practical pool-party attacks are 
Making sure we’re only breaking bad stuff… 

● Discussion and conclusions 
Fixes, other vectors, and more

3

Overview
● Defining pool-party attacks 

What they are, how they differ from other privacy attacks, etc 

● Pool-party attacks in popular browsers 
Which browsers, which APIs, across which contexts 

● Measuring how practical pool-party attacks are 
Making sure we’re only breaking bad stuff… 

● Discussion and conclusions 
Fixes, other vectors, and more

4

Defining pool-party attacks
● Category of covert channel in Web browsers,  

● …across distinct contexts, 
 
 

● …using resources that are limited and shared by those contexts

5

● Category of covert channel in Web browsers, 

● …across distinct contexts, 
 
 

● …using resources that are limited and shared by those contexts

Defining pool-party attacks

6

Site A Site B

User 
Identifier

Toy pool-party attack

7

Site A Site B

101011 ??????

Toy pool-party attack

8

Site A Site B

101011 ??????

Toy pool-party attack

9

Site A Site B

101011 1?????

Toy pool-party attack

10

Site A Site B

101011 1?????

Toy pool-party attack

11

Site A Site B

101011 10????

Generalizing properties of a pool-party attack
● Resources are unpartitioned across contexts 

Pool is shared across sites (or profiles, or storage clears) 

● Resource pool is limited to a predictable size 
Sites can only consume resources to a known limit 

● Sites are otherwise unrestricted in consuming resources 
No limit per context, other than global cap 

● Sites can learn when the global cap has been hit 
Errors, communication failures, explicit messages, etc

12

Pool-party attacks in browsers?
● Network connection pools
● File handle pools
● Thread pools
● “In flight” request limits
● UI bottle necks / modal prompts

13

What makes a good attack?
● Large pools 

The more resources in the pool, the larger the size of each “packet”

● Unpopular resources (features) 
The less a feature is used on the Web, the less noise the covert channel

● Quick to consume & release resources 
Faster consume/release, larger bandwidth

14

Overview
● Defining pool-party attacks 

What they are, how they differ from other privacy attacks, etc 

● Pool-party attacks in popular browsers 
Which browsers, which APIs, across which contexts 

● Measuring how practical pool-party attacks are 
Making sure we’re only breaking bad stuff… 

● Discussion and conclusions 
Fixes, other vectors, and more

15

Finding pool-party vulnerabilities: Browsers

16

Browser Engine Version

Brave Chromium 1.44.101

Chrome Chromium 105.0.5195.125

Edge Chromium 106.0.1370.42

Firefox Gecko 105.0.1

Safari WebKit 15.2

Tor Browser Gecko 11.5.2

Finding pool-party vulnerabilities: APIs
● Manual process

● Source code review

● Consulting developers

● Standards / developer docs

17

Finding pool-party vulnerabilities: APIs
● WebSockets 

Persistent TCP-like interface for client-server communication

● Web Workers 
Sub-process-like API for running scripts outside of main event loop

● Server-Sent Events 
Server-push-like API for servers to notify pages of updates

18

Finding pool-party vulnerabilities

19

Browser Contexts WebSockets Web Workers SSE

Brave Site 255 - 1,350

Chrome Site 255 - 1,350

Edge Site 255 - 1,350

Firefox Site & Profile 200 512 -

Safari Site - - 6

Tor Browser Site 200 - -

Finding pool-party vulnerabilities

20

Browser Contexts WebSockets Web Workers SSE

Brave Site 255 - 1,350

Chrome Site 255 - 1,350

Edge Site 255 - 1,350

Firefox Site & Profile 200 512 -

Safari Site - - 6

Tor Browser Site 200 - -

Finding pool-party vulnerabilities

21

Browser Contexts WebSockets Web Workers SSE

Brave Site 255 - 1,350

Chrome Site 255 - 1,350

Edge Site 255 - 1,350

Firefox Site & Profile 200 512 -

Safari Site - - 6

Tor Browser Site 200 - -

Overview
● Defining pool-party attacks 

What they are, how they differ from other privacy attacks, etc 

● Pool-party attacks in popular browsers 
Which browsers, which APIs, across which contexts 

● Measuring how practical pool-party attacks are 
Making sure we’re only breaking bad stuff… 

● Discussion and conclusions 
Fixes, other vectors, and more

22

Pool-party practicality
● Bandwidth 

How quickly can we transmit a user identifier across context boundaries

● Consistency 
How often does the attack succeed, given a stable, empty channel

● Stability 
How likely is it that the communication channel will be “clean”

23

Pool-party attack bandwidth & consistency

24

Browser Attack Channel Setup (s) Send (s) Total (s) Success Rate

Brave ServerSent Events 3.0 5.0 8.0 100%

Chrome ServerSent Events 2.0 5.0 7.0 100%

Edge ServerSent Events 2.0 5.0 7.0 100%

Chrome WebSockets 0.1 0.5 0.6 100%

Edge WebSockets 0.1 0.5 0.6 100%

Firefox WebSockets 2.0 5.0 7.0 71%

Tor Browser WebSockets 2.0 5.0 7.0 73%

Firefox Web Workers 1.5 7.5 9.0 95%

Measurement are for a 35 bit identifier, over 100 measurements

Pool-party attack bandwidth & consistency

25

Browser Attack Channel Setup (s) Send (s) Total (s) Success Rate

Brave ServerSent Events 3.0 5.0 8.0 100%

Chrome ServerSent Events 2.0 5.0 7.0 100%

Edge ServerSent Events 2.0 5.0 7.0 100%

Chrome WebSockets 0.1 0.5 0.6 100%

Edge WebSockets 0.1 0.5 0.6 100%

Firefox WebSockets 2.0 5.0 7.0 71%

Tor Browser WebSockets 2.0 5.0 7.0 73%

Firefox Web Workers 1.5 7.5 9.0 95%

Measurement are for a 35 bit identifier, over 100 measurements

Pool-party attack stability

26

Web API % of page loads % of desktop loads % of mobile loads

Web Workers 12.34 12.29% 11.9%

WebSocket 9.55% 4.33% 3.72%

Server-Sent Events 0.79% 0.8% 0.06%

Figures from Chrome Platform Status telemetry (August 9, 2022)

Overview
● Defining pool-party attacks 

What they are, how they differ from other privacy attacks, etc 

● Pool-party attacks in popular browsers 
Which browsers, which APIs, across which contexts 

● Measuring how practical pool-party attacks are 
Making sure we’re only breaking bad stuff… 

● Discussion and conclusions 
Fixes, other vectors, and more

27

Pool-party discussion: additional vectors
● Chromium & Gecko

- DNS resolver (64 simultaneous requests)

- HTTP requests w/ HTTP proxy (32 requests)

- OS pass through APIs (1 at a time) 

● WebKit
- Pre-fetch cache (64 hosts, GTK+ build only)

- DNS resolver (8 simultaneous requests, GTK+ build only) 

● Almost certainly incomplete list…

28

Pool-party discussion: defenses
● Problem -> Unpartitioned and limited

● Solution 1: Partition (but maintain global cap) 
- Each context gets its own allocation 
- Browsers: Brave

● Solution 2: Removal global cap (but keep unpartitioned) 
- No limit on availability 
- Browsers: Safari / WebKit

29

Pete Snyder 
pes@brave.com 
@pes10k

30

•Pool-party attacks exist(ed) in all browsers

•Practical and wide availability

•Probably more pool-party vulnerabilities

•Tracking on the Web is not a solved problem 

Take Aways

•Algorithmic details

•Comparison to other tracking techniques

•Measurement details

More In the Paper

