
Best-of-Breed Content Blocking in Brave: 
Three Projects to Improve the Depth, Breath, 
and Usefulness of Blocking at Scale

Pete Snyder

Senior Privacy Researcher 
pes@brave.com 
@pes10k

1

Hi, I’m Pete 👋

● Grew up in Chicago 
…actual Chicago 

● Law school -> freelance web stuff 
Started: Anchorage, AK  
Ended: Judge Judy Show invitation 

● PhD in Computer Science 
University of Illinois at Chicago

2

Me at Brave
● Researcher at Brave 

…privacy, blocking, reliability 

● Co-Chair of PING 
Privacy committee on W3C 

● Research <-> Engineering 
Web compat, filter lists,
fingerprinting, etc.

3

Brave in a Slide
● Privacy focused 

● Alternative web funding model 
Fix incentive problems

● Research + Engineering 

● Browsers and infrastructure now,
more to come…

4

Overview
● PageGraph 

Novel, open source, DOM attribution system 

● Behavioral Blocking 
Protecting Privacy Beyond URLs 

● Regional Filter List Generation 
Privacy protection for users in underserved regions 

● Automated Web Compatibility Testing 
Making sure we’re only breaking bad stuff…

5

Overview
● PageGraph 

Novel, open source, DOM attribution system 

● Behavioral Blocking 
Protecting Privacy Beyond URLs 

● Regional Filter List Generation 
Privacy protection for users in underserved regions 

● Automated Web Compatibility Testing 
Making sure we’re only breaking bad stuff…

6

Anton Lazarev - alazarev@brave.com 
Northeastern University

7

PageGraph: Motivation
● Lots of research requires understanding what script does what…

Forensics, privacy, performance prediction, debugging… 

● Seems simple… 
Doesn’t devtools do this already? Projects in research? 

● Online and offline analysis  
Ordered, correct causal analysis

8

PageGraph: Challenges
● Scripts

● Script injects another script?

● Inline scripts?

● Script in HTML attributes? JS URLs?

● Eval, new Function(), callback functions, micro tasks… 

● Network
● Attribution for injected images / videos

● Fetch? Ajax? Remote frames?

● Web API use? Storage? DOM modifications? Etc…

9

PageGraph: High Fidelity Cause Attribution
● Modification Cause Attribution 

Record cause of all DOM modifications, network requests, privacy-relevant
WebAPI calls 

● Graph Representation 
events -> edges, page elements -> nodes 

● Online and Offline Analysis 
In memory graph, GraphML Export 

● https://github.com/brave/brave-browser/wiki/PageGraph

10

https://github.com/brave/brave-browser/wiki/PageGraph

11

<script>

const elm = document.createElement("img");

elm.src = "/pixel.gif";

document.body.appendChild(elm); 
document.getElementsByTagName(“script”)[0] 
 …(rest removed)

</script>

PageGraph: Toy Example

12

<script>

const elm = document.createElement("img");

elm.src = "/pixel.gif";

document.body.appendChild(elm); 
document.getElementsByTagName(“script”)[0] 
 …(rest removed)

</script>

Parser

HTMLElm 
(script)

Create Elm

PageGraph: Toy Example

13

Parser

HTMLElm 
(script)

HTMLTxt 
(code)

Create Elm

<script>

const elm = document.createElement("img");

elm.src = "/pixel.gif";

document.body.appendChild(elm); 
document.getElementsByTagName(“script”)[0] 
 …(rest removed)

</script>

PageGraph: Toy Example

14

Parser

HTMLElm 
(script)

HTMLTxt 
(code)

Append Elm

<script>

const elm = document.createElement("img");

elm.src = "/pixel.gif";

document.body.appendChild(elm); 
document.getElementsByTagName(“script”)[0] 
 …(rest removed)

</script>

PageGraph: Toy Example

15

Parser

HTMLElm 
(script)

HTMLTxt 
(code)

Compile

JSScript

<script>

const elm = document.createElement("img");

elm.src = "/pixel.gif";

document.body.appendChild(elm); 
document.getElementsByTagName(“script”)[0] 
 …(rest removed)

</script>

PageGraph: Toy Example

16

Parser

HTMLElm 
(script)

HTMLTxt 
(code)

Create

JSScript

HTMLElm 
(img)

<script>

const elm = document.createElement("img");

elm.src = "/pixel.gif";

document.body.appendChild(elm); 
document.getElementsByTagName(“script”)[0] 
 …(rest removed)

</script>

PageGraph: Toy Example

17

Parser

HTMLElm 
(script)

HTMLTxt 
(code) JSScript

HTMLElm 
(img)

AttrCreate 
src=/pixel.gif 

<script>

const elm = document.createElement("img");

elm.src = "/pixel.gif";

document.body.appendChild(elm); 
document.getElementsByTagName(“script”)[0] 
 …(rest removed)

</script>

PageGraph: Toy Example

18

Parser

HTMLElm 
(script)

HTMLTxt 
(code)

RequestStart

JSScript

HTMLElm 
(img)

Resource 
/pixel.gif

<script>

const elm = document.createElement("img");

elm.src = "/pixel.gif";

document.body.appendChild(elm); 
document.getElementsByTagName(“script”)[0] 
 …(rest removed)

</script>

PageGraph: Toy Example

19

Parser

HTMLElm 
(script)

HTMLTxt 
(code)

Node Insert

JSScript

HTMLElm 
(img)

Resource 
/pixel.gif

<script>

const elm = document.createElement("img");

elm.src = "/pixel.gif";

document.body.appendChild(elm); 
document.getElementsByTagName(“script”)[0] 
 …(rest removed)

</script>

PageGraph: Toy Example

20

Parser

HTMLElm 
(script)

HTMLTxt 
(code)

RequestComplete

JSScript

HTMLElm 
(img)

Resource 
/pixel.gif

<script>

const elm = document.createElement("img");

elm.src = "/pixel.gif";

document.body.appendChild(elm); 
document.getElementsByTagName(“script”)[0] 
 …(rest removed)

</script>

PageGraph: Toy Example

21

Parser

HTMLElm 
(script)

HTMLTxt 
(code)

Delete Node

JSScript

HTMLElm 
(img)

Resource 
/pixel.gif

<script>

const elm = document.createElement("img");

elm.src = "/pixel.gif";

document.body.appendChild(elm); 
document.getElementsByTagName(“script”)[0] 
 …(rest removed)

</script>

PageGraph: Toy Example

Fingerprint2.js example…

22

All of CNN.com (for 30 sec…)

23

http://CNN.com

Limitations
● Still stuff to instrument… 

e.g. Module scripts 

● Bugs (but, few!) 
< 5% of pages will have an attribution error 

● Dense graphs 
Pages do a lot of things…

24

PageGraph: Summary
● Comprehensive causal attribution 

Attribute every request, DOM modification, compilation and privacy event to
responsible script 

● In modern chromium based browser  
Up to date Brave, up to date Chromium  

● Open source and For Use Now 
Build it today!

25

Overview
● PageGraph 

Novel, open source, DOM attribution system 

● Behavioral Blocking 
Protecting Privacy Beyond URLs 

● Regional Filter List Generation 
Privacy protection for users in underserved regions 

● Automated Web Compatibility Testing 
Making sure we’re only breaking bad stuff…

26

Quan Chen - qchen10@ncsu.edu  
North Carolina State University

27

mailto:qchen10@ncsu.edu

Blocking Arms Race

28

Tracking Domains /etc/hosts, Safari ITP
DNS filtering, etc…

Move “bad” code to
“good” domains

Blocking Arms Race

29

Tracking Domains /etc/hosts, Safari ITP
DNS filtering, etc…

Move “bad” code to
“good” domains

Mixed Domains Filter Lists, ITP2.0 Mix “bad” code with
“good” code

Blocking Arms Race

30

Tracking Domains /etc/hosts, Safari ITP
DNS filtering, etc…

Move “bad” code to
“good” domains

Mixed Domains Filter Lists, ITP2.0 Mix “bad” code with
“good” code

Mixed Code

Blocking Arms Race

31

Tracking Domains /etc/hosts, Safari ITP
DNS filtering, etc…

Move “bad” code to
“good” domains

Mixed Domains Filter Lists, ITP2.0 Mix “bad” code with
“good” code

Mixed Code

Behavioral Blocking Roadmap
1. Motivation 

2. Methodology 

3. Results 

4. Whats next

32

Behavioral Blocking Roadmap
1. Motivation 

2. Methodology 

3. Results 

4. Whats next

33

Motivating Example

34

<html>

 <head>

 <script src="(google-analytics.js)">

 <script src="(jQuery)">

 <script src="(Site stuff)">

 </head>

 <body>...</body>

</html>

Motivating Example

35

<html>

 <head>

 <script src="(google-analytics.js)">

 <script src="(jQuery)">

 <script src="(Site stuff)">

 </head>

 <body>...</body>

</html>

Motivating Example

36

<html>

 <head>

 <script src="( 

 google-analytics.js + jQuery + site stuff 

).min.js">

 </head>

 <body>...</body>

</html>

Motivating Example

37

<html>

 <head>

 <script src="( 

 google-analytics.js + jQuery + site stuff 

).min.js"> ¯_(ツ)_/¯

 </head>

 <body>...</body>

</html>

Core Problem: URLs
● Moved code

● Changing URLs

● Inlining code

● Bundling code

● etc

38

Project Goals
● Deliver the same privacy

protections, independent of
code delivery… 

● Independent of URL… 

● w/r/t Network requests, storage
access, fingerprinting endpoints

39

<html>

 <head>

 <script src="(google-analytics.js)">

 <script src="(jQuery)">

 <script src="(Site stuff)">

 </head>

 <body>...</body>

</html>

<html>

 <head>

 <script src="(google-analytics.js + 

 jQuery + site stuff).min.js">

 </head>

 <body>...</body>

</html>

≡

Straw Proposals

40

Trivial to circumventMatching hashes?

Straw Proposals

41

Trivial to circumventMatching hashes?

Code bundlers /
mungersASTs?

Straw Proposals

42

Trivial to circumventMatching hashes?

Code bundlers /
mungersASTs?

Minification /
obfuscation / etcIdentifying tokens

Behavioral Blocking Roadmap
1. Motivation 

2. Methodology 

3. Results 

4. Deployment

43

Methodology
1. Behavioral signatures of scripts 

Page graph, event loop turns 

2. Build set of known privacy-harming behaviors 
EasyList + EasyPrivacy as ground truth 

3. Check to see if new scripts do known bad things 
e.g. apply extracted signatures

44

Signature Granularity
● Entire Script / Library? 

Too non-deterministic, too much variation between sites 
e.g. false negatives

● Individual API Calls? 
Not enough information 
e.g. false positives 

● Event Loop Turns 
Good balance 
Allows some variation between library use

45

Fingerprint2.js (e.g. bad)

46

fingerprint2.js

canvas
screen.height

src=X

Image
resource

doc.cookie

Fingerprint2.js (e.g. bad)

47

fingerprint2.js

canvas
screen.height

src=X

Image
resource

doc.cookie

Obvious Fingerprint2.js is… obvious

48

site.js (e.g. benign)

49

site.js

src=/logo.png

Image
resource

<body>

class=js-yes

doc.cookie

combined.min.js

50

combined.js

src=/logo.png

Image
resource

<body>
class=js-yes

doc.cookiecanvas

screen.height

Image
resource

combined.min.js

51

combined.js

src=/logo.png

Image
resource

<body>
class=js-yes

doc.cookiecanvas

screen.height

Image
resource

Putting it together…
● Catch script activities between event loop yields 

● Graph represents as sequential edges and nodes 

● Extract EL+EP subgraphs using the above algo 

● Look for these recurring patterns in non-labeled JS units 

● Enforce protections as if it came from original labeled script

52

Behavioral Blocking Roadmap
1. Motivation 

2. Methodology 

3. Results 

4. Whats next

53

Raw data (partial)

54

Crawl set Alexa 100k

Generated signatures 1,996,093

Privacy affecting, “bad” behaviors 400,287

Num sites with >= 1 missed behavior 11,443

Taxonomy: Moving Scripts
● Moving script file from blocked code to new URL 

● https://example.org/tracker.js -> https://helpful.org/site.js 

● Long tail, hard to crowdsource, etc. 

● 4,730 sites

55

https://example.org/tracker.js
https://helpful.org/site.js

● https://www.google-analytics.com/analytics.js 

● Blocked by `||google-analytics.com/analytics.js` 

● https://messari.io includes https://messari.io/js/wutangtrack.js

Google Analytics

56

https://www.google-analytics.com/analytics.js
https://messari.io
https://messari.io/js/wutangtrack.js

● https://www.google-analytics.com/analytics.js  

● Blocked by `||google-analytics.com/analytics.js` 

● https://messari.io includes https://messari.io/js/wutangtrack.js  

●  
🤔🤔🤔🤔🤔🤔🤔🤔🤔🤔🤔🤔

Google Analytics

57

https://www.google-analytics.com/analytics.js
https://messari.io
https://messari.io/js/wutangtrack.js

Taxonomy: Inlining
● Moving script from a URL to txt 

● <script src=”X”> to <script>(code)</script> 

● Difficult for most tools to address at all 

● Impossible for current tools to address well 

● 223 sites

58

Dynatrace Example
● https://www.dynatrace.com/*  

(e.g. https://js-cdn.dynatrace.com/jstag/157944990f8/fsf84414/…) 

● Blocked by `||dynatrace.com^$third-party` 

● But look at https://www.dynatrace.com…

59

https://www.dynatrace.com/*
https://js-cdn.dynatrace.com/jstag/157944990f8/fsf84414/a90e6fc0c6178c0_complete.js
https://www.dynatrace.com/*

Taxonomy: Bundling
● Including harmful code with benign / user-serving code 

● jQuery + fingerprint2.js + site.js -> combined.min.js 

● No win choice for blockers… 

● 122 sites

60

Microsoft Insights
● E.g. https://az416426.vo.msecnd.net/scripts/a/ai.0.js 

● Blocked by `||msecnd.net/scripts/a/ai.0.js` 

● https://lindex.com -> https://www.lindex.com/web-assets/js/
vendors.8035c13832ab6bb90a46.js

61

https://lindex.com
https://lindex.com
https://www.lindex.com/web-assets/js/vendors.8035c13832ab6bb90a46.js
https://www.lindex.com/web-assets/js/vendors.8035c13832ab6bb90a46.js
https://www.lindex.com/web-assets/js/vendors.8035c13832ab6bb90a46.js

Taxonomy: Common Library
● Third party libraries used by larger libraries 

● Original library URL may never (rarely?) be fetched directly 

● Not *anything* to block off 

● 6,141 sites

62

Adobe Visitor API
● Adobe has many tracking libraries (e.g. Adobe Target) that all use the Adobe

Visitor API 

● Visitor API is the tracking part 

● Much is blocked with `||adobedtm.com^$third-party` 

● Other libs suck in Visitor API too  

● E.g. https://tags-eu.tiqcdn.com/utag/intel/profile-cq.emea/prod/utag.js

63

https://tags-eu.tiqcdn.com/utag/intel/profile-cq.emea/prod/utag.js

64

Behavioral Blocking Roadmap
1. Motivation 

2. Methodology 

3. Results 

4. Whats next

65

What To Do Next
● Defenses 

Moved scripts -> new filter rules 
Others -> maybe runtime fingerprint enforcement? 

● Is the problem getting worse? 
Longitudinal measurements (and WayBack Machine) 
Measurements going forward 

● Other places too 
JS urls, HTML attributes, service workers, etc.

66

Take Aways…
● Filter lists are porous 

● Focusing on URLs is the problem 

● Behavior >> delivery  

● Brave has plans to protect users in
a novel, more comprehensive way

67

Overview
● PageGraph 

Novel, open source, DOM attribution system 

● Behavioral Blocking 
Protecting Privacy Beyond URLs 

● Regional Filter List Generation 
Privacy protection for users in underserved regions 

● Automated Web Compatibility Testing 
Making sure we’re only breaking bad stuff…

68

Alexander Sjösten - sjosten@chalmers.se 
Chalmers University of Technology

69

mailto:sjosten@chalmers.se

Filter Lists, Unsung Heros…
● Crowdsourced Lists 

Network Rules: Requests 
Cosmetic Rules: Display 
Exceptions: Reverse the Above 

● EasyList: Blocks Ads 
73,079 rules 

● EasyPrivacy: Block Trackers 
17,024 rules

70

Crowdsourcing Is Tricky

71

11/19/2019 Eas\List Forum - Board Index

https://forums.lanik.us 1/3

p FAQ F Rules , Login\ Register

0 BRDUG IQGH[�

EaV\LiVW FRUXm

Forum rules
It is currently Tue Nov 19, 2019 9:31 pm

ł

ł

Í Quick links

Eas\List SXbscriptions

EaV\LiVW SXbVcUiSWiRQV
General information, announcements and questions about the EasyList subscriptions.
Subforum: 1 Policy

Topics: 867

ReSRUW XQblRcked cRQWeQW
Here you should report unblocked ads, trackers, social media items, annoyances or leftovers from blocked content.
Topics: 21612

ReSRUW iQcRUUecWl\ UemRYed cRQWeQW
This is where you should report issues arising from the subscription filters.
Topics: 6974

Eas\List SXpplementar\ SXbscriptions

ABPiQdR
Indonesian supplemental subscription
Topics: 45

EaV\LiVW C]ech & SlRYak
Czech and Slovak supplemental subscription
Moderator: EasyList Czech & Slovak Mods

Topics: 6

EaV\LiVW DXWch
Dutch supplemental subscription
Topics: 149

EaV\LiVW FiQlaQd
Finish supplemental subscription
Moderator: EasyList Finland Mods

Topics: 72

EaV\LiVW GeUmaQ\
German supplemental subscription
Topics: 1507

EaV\LiVW IWal\
Italian supplemental subscription
Topics: 261

EaV\LiVW LiWhXaQia
Lithuanian supplemental subscription
Moderator: EasyList Lithuania Mods

Topics: 9

EaV\LiVW PRliVh
Polish supplemental subscription
Moderator: EasyList Polish Mods

Topics: 18

EaV\LiVW PRUWXgXeVe
Portuguese supplemental subscription
Moderator: EasyList Spanish Mods

Topics: 12

11/19/2019 Eas\List Forum - Board Index

https://forums.lanik.us 1/3

p FAQ F Rules , Login\ Register

0 BRDUG IQGH[�

EaV\LiVW FRUXm

Forum rules
It is currently Tue Nov 19, 2019 9:31 pm

ł

ł

Í Quick links

Eas\List SXbscriptions

EaV\LiVW SXbVcUiSWiRQV
General information, announcements and questions about the EasyList subscriptions.
Subforum: 1 Policy

Topics: 867

ReSRUW XQblRcked cRQWeQW
Here you should report unblocked ads, trackers, social media items, annoyances or leftovers from blocked content.
Topics: 21612

ReSRUW iQcRUUecWl\ UemRYed cRQWeQW
This is where you should report issues arising from the subscription filters.
Topics: 6974

Eas\List SXpplementar\ SXbscriptions

ABPiQdR
Indonesian supplemental subscription
Topics: 45

EaV\LiVW C]ech & SlRYak
Czech and Slovak supplemental subscription
Moderator: EasyList Czech & Slovak Mods

Topics: 6

EaV\LiVW DXWch
Dutch supplemental subscription
Topics: 149

EaV\LiVW FiQlaQd
Finish supplemental subscription
Moderator: EasyList Finland Mods

Topics: 72

EaV\LiVW GeUmaQ\
German supplemental subscription
Topics: 1507

EaV\LiVW IWal\
Italian supplemental subscription
Topics: 261

EaV\LiVW LiWhXaQia
Lithuanian supplemental subscription
Moderator: EasyList Lithuania Mods

Topics: 9

EaV\LiVW PRliVh
Polish supplemental subscription
Moderator: EasyList Polish Mods

Topics: 18

EaV\LiVW PRUWXgXeVe
Portuguese supplemental subscription
Moderator: EasyList Spanish Mods

Topics: 12

What About Everyone Else
● Regions with Fewer Speakers? 

● Regions with Less Affluent Speakers? 

● Less Internet Users? 

● Higher Data Plans? 

● etc…

72

Project In a Nutshell
● Image and Frame Classifier 

Heavy, offline, contextual 

● Block High in Request Chain 
e.g. PageGraph to determine request causes 

● Don’t Break Pages 
e.g. PageGraph to understand impact of blocking 

● Generate AdBlock Compatible Rules 
e.g. shippable and shareable

73

Project In a Nutshell
● Image and Frame Classifier 

Heavy, offline, contextual 

● Block High in Request Chain 
e.g. PageGraph to determine request causes 

● Don’t Break Pages 
e.g. PageGraph to understand impact of blocking 

● Generate AdBlock Compatible Rules 
e.g. shippable and shareable

74

75

76

77

Existing Work Doesn’t Generalize

78

Accuracy Precision Recall

Trained Data 95.9% 95.5% 96.4%

New Data 77.0% 48.8% 87.4%

Contextual Classifier
● Existing Image Classifier 

Tigas, Panagiotis, Samuel T. King, and Benjamin Livshits. 
"Percival: Making In-Browser Perceptual Ad Blocking Practical With Deep
Learning.” 

● PageGraph Contextual Information 
First or third party URL? 
Injected by script? 
Parent node degree? 

79

Context Helps a Lot…

80

Accuracy Precision Recall

Trained Data 95.9% 95.5% 96.4%

New Data 77.0% 48.8% 87.4%

Contextual 97.6% 92.0% 75.0%

Project In a Nutshell
● Image and Frame Classifier 

Heavy, offline, contextual 

● Block High in Request Chain 
e.g. PageGraph to determine request causes 

● Don’t Break Pages 
e.g. PageGraph to understand impact of blocking 

● Generate AdBlock Compatible Rules 
e.g. shippable and shareable

81

Ads Aren’t (Usually) Static URLs
● Programmatically Inserted Scripts 

● Real Time Bidding 

● Header Bidding 

● Targeting Final URLs -> Stale Rules 
 

82

83

84

85

frame or image element is particularly valuable to this work, as
described in the following subsections.

3.3.2 Di�erences from Existing Work. The most relevant related
work to PageGraph is the AdGraph project, which also modi�es the
Blink and V8 systems in Chromium to build a graph-representation
of page execution. PageGraph di�ers from AdGraph in several
signi�cant ways.

Improved Attribution Accuracy. PageGraph signi�cantly im-
proves cause-attribution in the graph, or correctly determin-
ing which JavaScript unit is responsible for each modi�cation.
We observed a non-trivial number of corner cases where Ad-
Graph would attribute modi�cations to the wrong script unit,
such as when the script was executed as a result of an ele-
ment attribute (e.g. onerror=�do_something()�), or when the
JavaScript stack is reset through events like timer callbacks
(e.g. setTimeout(do_something,1)). PageGraph correctly han-
dles these and a large number of similar corner cases.

Increased Attribution Breadth. PageGraph signi�cantly in-
creases the set of page events tracked in the graph, beyond what
AdGraph records. For example, PageGraph tracks image requests
initiated because of CSS rules and prefetch instructions, records
modi�cations made in local sub-documents, and tracks failed net-
work requests, among many others. This additional attribution
allows for greater understanding of the context scripts execute in.

3.4 Generalizing Filter Rules
We next discuss how we generate generalized �lter rules from
the data gathered by the previously described image classi�er and
browser instrumentation. The general approach is to �nd URLs
serving ad images and frames using the classi�er, use the browser
instrumentation to build the entire request chain that caused the
advertisement to be included in the page (e.g. the script that fetched
the script that inserted the image), and then again use the browser
instrumentation to determine how far up each request chain we
can block without breaking the page.

We build these request chains for both images (and frames) our
classi�er identi�es as an ad, and for resources identi�ed by net-
work rules in existing �lter lists (i.e. EasyList, EasyPrivacy and the
most up to date applicable regional list). The former allows us to
generalize the bene�ts of our image classi�er, the latter allows us
to maximize the bene�ts of existing �lter lists.

3.4.1 Motivation. Blocking higher in the request chain has several
bene�ts. First, and most importantly, targeting URLs higher in
the request chain yields a more consistent set of URLs. While the
speci�c images that an ad library loads will change frequently, the
URL of the ad library itself will rarely change. Approaches that
target the frequently changing image URLs will result in �lter list
rules that quickly go stale; rules that target ad library scripts (as
one example) are more likely to be useful over time, and to a wider
range of users. Moving higher in the request chain means we are
more likely to programmatically identify ad libraries in addition to
frequently changing, one-o� image URLs.

Second, blocking higher in request chains reduces the total num-
ber of requests, bringing privacy and performance improvements.

+70/�3DUVHU 6FULSW�� 6FULSW�� $G�LPDJH

�VFULSW! �LPJ! �GLY! �GLY!

LQV
HUW

LQ
VH
UW LQVHUW LQ

VH
UW

LQVHUW LQVHUW LQVHUW

Figure 5: Example of a request chain, ending in an inserted ad image.

Blocking a single “upstream” ad library may prevent the browser
from needing to consider several “downstream” requests.

3.4.2 Building Request Chains. To generate optimized �lter list
rules, we target not only the ad images and ad frames in each
page, but the scripts that injected those images and frames (and,
potentially, the scripts that injected those scripts, etc.). We refer
to the cause of a request as being “upstream”, and the thing being
requested “downstream”. We refer to the list of elements that par-
ticipated in an advertisement being included as its “request chain.”

For each , <iframe> and <script> in a page, we determine
the request chain as follows:

(1) Locate each element in the PageGraph generated graph struc-
ture. Call this element X.

(2) Use the graph edges to determine how X was inserted in the
document. If X was inserted by the parser (i.e. it appeared in
the initial HTML text) then stop.

(3) Otherwise, append the script element X into the request
chain for X, set the responsible script element as the new X
and continue from #2 above.

A simpli�ed result of this process is depicted in Figure 5. The
�gure shows a simpli�ed request chain, where a script was included
in the initial HTML (“script one”), that script programmatically
inserted another script element into the document (“script two”)
and that second script inserted an advertising image into the page.

We use these request chains to determine the optimal place
to start blocking, using the approach described in the following
section.

3.5 Safe Blocking in Request Chains
This subsection describes how we determine whether blocking a
script request is likely to break a page. We use this technique to
determine how “high” in each request chain we can block, with
the goal of determining the earliest “upstream” request we can
block in a request chain without breaking the page. Our approach
is “conservative” (i.e. prefers false negatives over false positives),
under the intuition that users would prefer a working, ad-�lled
page, over a broken, ad-less page.

3.5.1 Determining Page Breakage. We use a pair of simple heuris-
tics to determine whether blocking a script is likely to break a page.
These heuristics are designed to distinguish scripts that only in-
ject ads into pages from scripts that perform more complex, and
hopefully user serving, page operations.

(1) If a script creates more than two subtrees in the document,
we consider it unsafe to block.

(2) If a script inserts another script that matches condition #1,
we consider it unsafe to block.

5

86

frame or image element is particularly valuable to this work, as
described in the following subsections.

3.3.2 Di�erences from Existing Work. The most relevant related
work to PageGraph is the AdGraph project, which also modi�es the
Blink and V8 systems in Chromium to build a graph-representation
of page execution. PageGraph di�ers from AdGraph in several
signi�cant ways.

Improved Attribution Accuracy. PageGraph signi�cantly im-
proves cause-attribution in the graph, or correctly determin-
ing which JavaScript unit is responsible for each modi�cation.
We observed a non-trivial number of corner cases where Ad-
Graph would attribute modi�cations to the wrong script unit,
such as when the script was executed as a result of an ele-
ment attribute (e.g. onerror=�do_something()�), or when the
JavaScript stack is reset through events like timer callbacks
(e.g. setTimeout(do_something,1)). PageGraph correctly han-
dles these and a large number of similar corner cases.

Increased Attribution Breadth. PageGraph signi�cantly in-
creases the set of page events tracked in the graph, beyond what
AdGraph records. For example, PageGraph tracks image requests
initiated because of CSS rules and prefetch instructions, records
modi�cations made in local sub-documents, and tracks failed net-
work requests, among many others. This additional attribution
allows for greater understanding of the context scripts execute in.

3.4 Generalizing Filter Rules
We next discuss how we generate generalized �lter rules from
the data gathered by the previously described image classi�er and
browser instrumentation. The general approach is to �nd URLs
serving ad images and frames using the classi�er, use the browser
instrumentation to build the entire request chain that caused the
advertisement to be included in the page (e.g. the script that fetched
the script that inserted the image), and then again use the browser
instrumentation to determine how far up each request chain we
can block without breaking the page.

We build these request chains for both images (and frames) our
classi�er identi�es as an ad, and for resources identi�ed by net-
work rules in existing �lter lists (i.e. EasyList, EasyPrivacy and the
most up to date applicable regional list). The former allows us to
generalize the bene�ts of our image classi�er, the latter allows us
to maximize the bene�ts of existing �lter lists.

3.4.1 Motivation. Blocking higher in the request chain has several
bene�ts. First, and most importantly, targeting URLs higher in
the request chain yields a more consistent set of URLs. While the
speci�c images that an ad library loads will change frequently, the
URL of the ad library itself will rarely change. Approaches that
target the frequently changing image URLs will result in �lter list
rules that quickly go stale; rules that target ad library scripts (as
one example) are more likely to be useful over time, and to a wider
range of users. Moving higher in the request chain means we are
more likely to programmatically identify ad libraries in addition to
frequently changing, one-o� image URLs.

Second, blocking higher in request chains reduces the total num-
ber of requests, bringing privacy and performance improvements.

+70/�3DUVHU 6FULSW�� 6FULSW�� $G�LPDJH

�VFULSW! �LPJ! �GLY! �GLY!

LQV
HUW

LQ
VH
UW LQVHUW LQ

VH
UW

LQVHUW LQVHUW LQVHUW

Figure 5: Example of a request chain, ending in an inserted ad image.

Blocking a single “upstream” ad library may prevent the browser
from needing to consider several “downstream” requests.

3.4.2 Building Request Chains. To generate optimized �lter list
rules, we target not only the ad images and ad frames in each
page, but the scripts that injected those images and frames (and,
potentially, the scripts that injected those scripts, etc.). We refer
to the cause of a request as being “upstream”, and the thing being
requested “downstream”. We refer to the list of elements that par-
ticipated in an advertisement being included as its “request chain.”

For each , <iframe> and <script> in a page, we determine
the request chain as follows:

(1) Locate each element in the PageGraph generated graph struc-
ture. Call this element X.

(2) Use the graph edges to determine how X was inserted in the
document. If X was inserted by the parser (i.e. it appeared in
the initial HTML text) then stop.

(3) Otherwise, append the script element X into the request
chain for X, set the responsible script element as the new X
and continue from #2 above.

A simpli�ed result of this process is depicted in Figure 5. The
�gure shows a simpli�ed request chain, where a script was included
in the initial HTML (“script one”), that script programmatically
inserted another script element into the document (“script two”)
and that second script inserted an advertising image into the page.

We use these request chains to determine the optimal place
to start blocking, using the approach described in the following
section.

3.5 Safe Blocking in Request Chains
This subsection describes how we determine whether blocking a
script request is likely to break a page. We use this technique to
determine how “high” in each request chain we can block, with
the goal of determining the earliest “upstream” request we can
block in a request chain without breaking the page. Our approach
is “conservative” (i.e. prefers false negatives over false positives),
under the intuition that users would prefer a working, ad-�lled
page, over a broken, ad-less page.

3.5.1 Determining Page Breakage. We use a pair of simple heuris-
tics to determine whether blocking a script is likely to break a page.
These heuristics are designed to distinguish scripts that only in-
ject ads into pages from scripts that perform more complex, and
hopefully user serving, page operations.

(1) If a script creates more than two subtrees in the document,
we consider it unsafe to block.

(2) If a script inserts another script that matches condition #1,
we consider it unsafe to block.

5

87

frame or image element is particularly valuable to this work, as
described in the following subsections.

3.3.2 Di�erences from Existing Work. The most relevant related
work to PageGraph is the AdGraph project, which also modi�es the
Blink and V8 systems in Chromium to build a graph-representation
of page execution. PageGraph di�ers from AdGraph in several
signi�cant ways.

Improved Attribution Accuracy. PageGraph signi�cantly im-
proves cause-attribution in the graph, or correctly determin-
ing which JavaScript unit is responsible for each modi�cation.
We observed a non-trivial number of corner cases where Ad-
Graph would attribute modi�cations to the wrong script unit,
such as when the script was executed as a result of an ele-
ment attribute (e.g. onerror=�do_something()�), or when the
JavaScript stack is reset through events like timer callbacks
(e.g. setTimeout(do_something,1)). PageGraph correctly han-
dles these and a large number of similar corner cases.

Increased Attribution Breadth. PageGraph signi�cantly in-
creases the set of page events tracked in the graph, beyond what
AdGraph records. For example, PageGraph tracks image requests
initiated because of CSS rules and prefetch instructions, records
modi�cations made in local sub-documents, and tracks failed net-
work requests, among many others. This additional attribution
allows for greater understanding of the context scripts execute in.

3.4 Generalizing Filter Rules
We next discuss how we generate generalized �lter rules from
the data gathered by the previously described image classi�er and
browser instrumentation. The general approach is to �nd URLs
serving ad images and frames using the classi�er, use the browser
instrumentation to build the entire request chain that caused the
advertisement to be included in the page (e.g. the script that fetched
the script that inserted the image), and then again use the browser
instrumentation to determine how far up each request chain we
can block without breaking the page.

We build these request chains for both images (and frames) our
classi�er identi�es as an ad, and for resources identi�ed by net-
work rules in existing �lter lists (i.e. EasyList, EasyPrivacy and the
most up to date applicable regional list). The former allows us to
generalize the bene�ts of our image classi�er, the latter allows us
to maximize the bene�ts of existing �lter lists.

3.4.1 Motivation. Blocking higher in the request chain has several
bene�ts. First, and most importantly, targeting URLs higher in
the request chain yields a more consistent set of URLs. While the
speci�c images that an ad library loads will change frequently, the
URL of the ad library itself will rarely change. Approaches that
target the frequently changing image URLs will result in �lter list
rules that quickly go stale; rules that target ad library scripts (as
one example) are more likely to be useful over time, and to a wider
range of users. Moving higher in the request chain means we are
more likely to programmatically identify ad libraries in addition to
frequently changing, one-o� image URLs.

Second, blocking higher in request chains reduces the total num-
ber of requests, bringing privacy and performance improvements.

+70/�3DUVHU 6FULSW�� 6FULSW�� $G�LPDJH

�VFULSW! �LPJ! �GLY! �GLY!

LQV
HUW

LQ
VH
UW LQVHUW LQ

VH
UW

LQVHUW LQVHUW LQVHUW

Figure 5: Example of a request chain, ending in an inserted ad image.

Blocking a single “upstream” ad library may prevent the browser
from needing to consider several “downstream” requests.

3.4.2 Building Request Chains. To generate optimized �lter list
rules, we target not only the ad images and ad frames in each
page, but the scripts that injected those images and frames (and,
potentially, the scripts that injected those scripts, etc.). We refer
to the cause of a request as being “upstream”, and the thing being
requested “downstream”. We refer to the list of elements that par-
ticipated in an advertisement being included as its “request chain.”

For each , <iframe> and <script> in a page, we determine
the request chain as follows:

(1) Locate each element in the PageGraph generated graph struc-
ture. Call this element X.

(2) Use the graph edges to determine how X was inserted in the
document. If X was inserted by the parser (i.e. it appeared in
the initial HTML text) then stop.

(3) Otherwise, append the script element X into the request
chain for X, set the responsible script element as the new X
and continue from #2 above.

A simpli�ed result of this process is depicted in Figure 5. The
�gure shows a simpli�ed request chain, where a script was included
in the initial HTML (“script one”), that script programmatically
inserted another script element into the document (“script two”)
and that second script inserted an advertising image into the page.

We use these request chains to determine the optimal place
to start blocking, using the approach described in the following
section.

3.5 Safe Blocking in Request Chains
This subsection describes how we determine whether blocking a
script request is likely to break a page. We use this technique to
determine how “high” in each request chain we can block, with
the goal of determining the earliest “upstream” request we can
block in a request chain without breaking the page. Our approach
is “conservative” (i.e. prefers false negatives over false positives),
under the intuition that users would prefer a working, ad-�lled
page, over a broken, ad-less page.

3.5.1 Determining Page Breakage. We use a pair of simple heuris-
tics to determine whether blocking a script is likely to break a page.
These heuristics are designed to distinguish scripts that only in-
ject ads into pages from scripts that perform more complex, and
hopefully user serving, page operations.

(1) If a script creates more than two subtrees in the document,
we consider it unsafe to block.

(2) If a script inserts another script that matches condition #1,
we consider it unsafe to block.

5

? ? ?

Project In a Nutshell
● Image and Frame Classifier 

Heavy, offline, contextual 

● Block High in Request Chain 
e.g. PageGraph to determine request causes 

● Don’t Break Pages 
e.g. PageGraph to understand impact of blocking 

● Generate AdBlock Compatible Rules 
e.g. shippable and shareable

88

89

frame or image element is particularly valuable to this work, as
described in the following subsections.

3.3.2 Di�erences from Existing Work. The most relevant related
work to PageGraph is the AdGraph project, which also modi�es the
Blink and V8 systems in Chromium to build a graph-representation
of page execution. PageGraph di�ers from AdGraph in several
signi�cant ways.

Improved Attribution Accuracy. PageGraph signi�cantly im-
proves cause-attribution in the graph, or correctly determin-
ing which JavaScript unit is responsible for each modi�cation.
We observed a non-trivial number of corner cases where Ad-
Graph would attribute modi�cations to the wrong script unit,
such as when the script was executed as a result of an ele-
ment attribute (e.g. onerror=�do_something()�), or when the
JavaScript stack is reset through events like timer callbacks
(e.g. setTimeout(do_something,1)). PageGraph correctly han-
dles these and a large number of similar corner cases.

Increased Attribution Breadth. PageGraph signi�cantly in-
creases the set of page events tracked in the graph, beyond what
AdGraph records. For example, PageGraph tracks image requests
initiated because of CSS rules and prefetch instructions, records
modi�cations made in local sub-documents, and tracks failed net-
work requests, among many others. This additional attribution
allows for greater understanding of the context scripts execute in.

3.4 Generalizing Filter Rules
We next discuss how we generate generalized �lter rules from
the data gathered by the previously described image classi�er and
browser instrumentation. The general approach is to �nd URLs
serving ad images and frames using the classi�er, use the browser
instrumentation to build the entire request chain that caused the
advertisement to be included in the page (e.g. the script that fetched
the script that inserted the image), and then again use the browser
instrumentation to determine how far up each request chain we
can block without breaking the page.

We build these request chains for both images (and frames) our
classi�er identi�es as an ad, and for resources identi�ed by net-
work rules in existing �lter lists (i.e. EasyList, EasyPrivacy and the
most up to date applicable regional list). The former allows us to
generalize the bene�ts of our image classi�er, the latter allows us
to maximize the bene�ts of existing �lter lists.

3.4.1 Motivation. Blocking higher in the request chain has several
bene�ts. First, and most importantly, targeting URLs higher in
the request chain yields a more consistent set of URLs. While the
speci�c images that an ad library loads will change frequently, the
URL of the ad library itself will rarely change. Approaches that
target the frequently changing image URLs will result in �lter list
rules that quickly go stale; rules that target ad library scripts (as
one example) are more likely to be useful over time, and to a wider
range of users. Moving higher in the request chain means we are
more likely to programmatically identify ad libraries in addition to
frequently changing, one-o� image URLs.

Second, blocking higher in request chains reduces the total num-
ber of requests, bringing privacy and performance improvements.

+70/�3DUVHU 6FULSW�� 6FULSW�� $G�LPDJH

�VFULSW! �LPJ! �GLY! �GLY!

LQV
HUW

LQ
VH
UW LQVHUW LQ

VH
UW

LQVHUW LQVHUW LQVHUW

Figure 5: Example of a request chain, ending in an inserted ad image.

Blocking a single “upstream” ad library may prevent the browser
from needing to consider several “downstream” requests.

3.4.2 Building Request Chains. To generate optimized �lter list
rules, we target not only the ad images and ad frames in each
page, but the scripts that injected those images and frames (and,
potentially, the scripts that injected those scripts, etc.). We refer
to the cause of a request as being “upstream”, and the thing being
requested “downstream”. We refer to the list of elements that par-
ticipated in an advertisement being included as its “request chain.”

For each , <iframe> and <script> in a page, we determine
the request chain as follows:

(1) Locate each element in the PageGraph generated graph struc-
ture. Call this element X.

(2) Use the graph edges to determine how X was inserted in the
document. If X was inserted by the parser (i.e. it appeared in
the initial HTML text) then stop.

(3) Otherwise, append the script element X into the request
chain for X, set the responsible script element as the new X
and continue from #2 above.

A simpli�ed result of this process is depicted in Figure 5. The
�gure shows a simpli�ed request chain, where a script was included
in the initial HTML (“script one”), that script programmatically
inserted another script element into the document (“script two”)
and that second script inserted an advertising image into the page.

We use these request chains to determine the optimal place
to start blocking, using the approach described in the following
section.

3.5 Safe Blocking in Request Chains
This subsection describes how we determine whether blocking a
script request is likely to break a page. We use this technique to
determine how “high” in each request chain we can block, with
the goal of determining the earliest “upstream” request we can
block in a request chain without breaking the page. Our approach
is “conservative” (i.e. prefers false negatives over false positives),
under the intuition that users would prefer a working, ad-�lled
page, over a broken, ad-less page.

3.5.1 Determining Page Breakage. We use a pair of simple heuris-
tics to determine whether blocking a script is likely to break a page.
These heuristics are designed to distinguish scripts that only in-
ject ads into pages from scripts that perform more complex, and
hopefully user serving, page operations.

(1) If a script creates more than two subtrees in the document,
we consider it unsafe to block.

(2) If a script inserts another script that matches condition #1,
we consider it unsafe to block.

5

? ? ?

Where to Safely Cut?
1.Start with identified ad… 

2.If a script creates more then two
subtrees in the document, stop 

3.If script inserts a script that that
does #2, stop 

4.Otherwise, block and continue up

90

frame or image element is particularly valuable to this work, as
described in the following subsections.

3.3.2 Di�erences from Existing Work. The most relevant related
work to PageGraph is the AdGraph project, which also modi�es the
Blink and V8 systems in Chromium to build a graph-representation
of page execution. PageGraph di�ers from AdGraph in several
signi�cant ways.

Improved Attribution Accuracy. PageGraph signi�cantly im-
proves cause-attribution in the graph, or correctly determin-
ing which JavaScript unit is responsible for each modi�cation.
We observed a non-trivial number of corner cases where Ad-
Graph would attribute modi�cations to the wrong script unit,
such as when the script was executed as a result of an ele-
ment attribute (e.g. onerror=�do_something()�), or when the
JavaScript stack is reset through events like timer callbacks
(e.g. setTimeout(do_something,1)). PageGraph correctly han-
dles these and a large number of similar corner cases.

Increased Attribution Breadth. PageGraph signi�cantly in-
creases the set of page events tracked in the graph, beyond what
AdGraph records. For example, PageGraph tracks image requests
initiated because of CSS rules and prefetch instructions, records
modi�cations made in local sub-documents, and tracks failed net-
work requests, among many others. This additional attribution
allows for greater understanding of the context scripts execute in.

3.4 Generalizing Filter Rules
We next discuss how we generate generalized �lter rules from
the data gathered by the previously described image classi�er and
browser instrumentation. The general approach is to �nd URLs
serving ad images and frames using the classi�er, use the browser
instrumentation to build the entire request chain that caused the
advertisement to be included in the page (e.g. the script that fetched
the script that inserted the image), and then again use the browser
instrumentation to determine how far up each request chain we
can block without breaking the page.

We build these request chains for both images (and frames) our
classi�er identi�es as an ad, and for resources identi�ed by net-
work rules in existing �lter lists (i.e. EasyList, EasyPrivacy and the
most up to date applicable regional list). The former allows us to
generalize the bene�ts of our image classi�er, the latter allows us
to maximize the bene�ts of existing �lter lists.

3.4.1 Motivation. Blocking higher in the request chain has several
bene�ts. First, and most importantly, targeting URLs higher in
the request chain yields a more consistent set of URLs. While the
speci�c images that an ad library loads will change frequently, the
URL of the ad library itself will rarely change. Approaches that
target the frequently changing image URLs will result in �lter list
rules that quickly go stale; rules that target ad library scripts (as
one example) are more likely to be useful over time, and to a wider
range of users. Moving higher in the request chain means we are
more likely to programmatically identify ad libraries in addition to
frequently changing, one-o� image URLs.

Second, blocking higher in request chains reduces the total num-
ber of requests, bringing privacy and performance improvements.

+70/�3DUVHU 6FULSW�� 6FULSW�� $G�LPDJH

�VFULSW! �LPJ! �GLY! �GLY!

LQV
HUW

LQ
VH
UW LQVHUW LQ

VH
UW

LQVHUW LQVHUW LQVHUW

Figure 5: Example of a request chain, ending in an inserted ad image.

Blocking a single “upstream” ad library may prevent the browser
from needing to consider several “downstream” requests.

3.4.2 Building Request Chains. To generate optimized �lter list
rules, we target not only the ad images and ad frames in each
page, but the scripts that injected those images and frames (and,
potentially, the scripts that injected those scripts, etc.). We refer
to the cause of a request as being “upstream”, and the thing being
requested “downstream”. We refer to the list of elements that par-
ticipated in an advertisement being included as its “request chain.”

For each , <iframe> and <script> in a page, we determine
the request chain as follows:

(1) Locate each element in the PageGraph generated graph struc-
ture. Call this element X.

(2) Use the graph edges to determine how X was inserted in the
document. If X was inserted by the parser (i.e. it appeared in
the initial HTML text) then stop.

(3) Otherwise, append the script element X into the request
chain for X, set the responsible script element as the new X
and continue from #2 above.

A simpli�ed result of this process is depicted in Figure 5. The
�gure shows a simpli�ed request chain, where a script was included
in the initial HTML (“script one”), that script programmatically
inserted another script element into the document (“script two”)
and that second script inserted an advertising image into the page.

We use these request chains to determine the optimal place
to start blocking, using the approach described in the following
section.

3.5 Safe Blocking in Request Chains
This subsection describes how we determine whether blocking a
script request is likely to break a page. We use this technique to
determine how “high” in each request chain we can block, with
the goal of determining the earliest “upstream” request we can
block in a request chain without breaking the page. Our approach
is “conservative” (i.e. prefers false negatives over false positives),
under the intuition that users would prefer a working, ad-�lled
page, over a broken, ad-less page.

3.5.1 Determining Page Breakage. We use a pair of simple heuris-
tics to determine whether blocking a script is likely to break a page.
These heuristics are designed to distinguish scripts that only in-
ject ads into pages from scripts that perform more complex, and
hopefully user serving, page operations.

(1) If a script creates more than two subtrees in the document,
we consider it unsafe to block.

(2) If a script inserts another script that matches condition #1,
we consider it unsafe to block.

5

91

frame or image element is particularly valuable to this work, as
described in the following subsections.

3.3.2 Di�erences from Existing Work. The most relevant related
work to PageGraph is the AdGraph project, which also modi�es the
Blink and V8 systems in Chromium to build a graph-representation
of page execution. PageGraph di�ers from AdGraph in several
signi�cant ways.

Improved Attribution Accuracy. PageGraph signi�cantly im-
proves cause-attribution in the graph, or correctly determin-
ing which JavaScript unit is responsible for each modi�cation.
We observed a non-trivial number of corner cases where Ad-
Graph would attribute modi�cations to the wrong script unit,
such as when the script was executed as a result of an ele-
ment attribute (e.g. onerror=�do_something()�), or when the
JavaScript stack is reset through events like timer callbacks
(e.g. setTimeout(do_something,1)). PageGraph correctly han-
dles these and a large number of similar corner cases.

Increased Attribution Breadth. PageGraph signi�cantly in-
creases the set of page events tracked in the graph, beyond what
AdGraph records. For example, PageGraph tracks image requests
initiated because of CSS rules and prefetch instructions, records
modi�cations made in local sub-documents, and tracks failed net-
work requests, among many others. This additional attribution
allows for greater understanding of the context scripts execute in.

3.4 Generalizing Filter Rules
We next discuss how we generate generalized �lter rules from
the data gathered by the previously described image classi�er and
browser instrumentation. The general approach is to �nd URLs
serving ad images and frames using the classi�er, use the browser
instrumentation to build the entire request chain that caused the
advertisement to be included in the page (e.g. the script that fetched
the script that inserted the image), and then again use the browser
instrumentation to determine how far up each request chain we
can block without breaking the page.

We build these request chains for both images (and frames) our
classi�er identi�es as an ad, and for resources identi�ed by net-
work rules in existing �lter lists (i.e. EasyList, EasyPrivacy and the
most up to date applicable regional list). The former allows us to
generalize the bene�ts of our image classi�er, the latter allows us
to maximize the bene�ts of existing �lter lists.

3.4.1 Motivation. Blocking higher in the request chain has several
bene�ts. First, and most importantly, targeting URLs higher in
the request chain yields a more consistent set of URLs. While the
speci�c images that an ad library loads will change frequently, the
URL of the ad library itself will rarely change. Approaches that
target the frequently changing image URLs will result in �lter list
rules that quickly go stale; rules that target ad library scripts (as
one example) are more likely to be useful over time, and to a wider
range of users. Moving higher in the request chain means we are
more likely to programmatically identify ad libraries in addition to
frequently changing, one-o� image URLs.

Second, blocking higher in request chains reduces the total num-
ber of requests, bringing privacy and performance improvements.

+70/�3DUVHU 6FULSW�� 6FULSW�� $G�LPDJH

�VFULSW! �LPJ! �GLY! �GLY!

LQV
HUW

LQ
VH
UW LQVHUW LQ

VH
UW

LQVHUW LQVHUW LQVHUW

Figure 5: Example of a request chain, ending in an inserted ad image.

Blocking a single “upstream” ad library may prevent the browser
from needing to consider several “downstream” requests.

3.4.2 Building Request Chains. To generate optimized �lter list
rules, we target not only the ad images and ad frames in each
page, but the scripts that injected those images and frames (and,
potentially, the scripts that injected those scripts, etc.). We refer
to the cause of a request as being “upstream”, and the thing being
requested “downstream”. We refer to the list of elements that par-
ticipated in an advertisement being included as its “request chain.”

For each , <iframe> and <script> in a page, we determine
the request chain as follows:

(1) Locate each element in the PageGraph generated graph struc-
ture. Call this element X.

(2) Use the graph edges to determine how X was inserted in the
document. If X was inserted by the parser (i.e. it appeared in
the initial HTML text) then stop.

(3) Otherwise, append the script element X into the request
chain for X, set the responsible script element as the new X
and continue from #2 above.

A simpli�ed result of this process is depicted in Figure 5. The
�gure shows a simpli�ed request chain, where a script was included
in the initial HTML (“script one”), that script programmatically
inserted another script element into the document (“script two”)
and that second script inserted an advertising image into the page.

We use these request chains to determine the optimal place
to start blocking, using the approach described in the following
section.

3.5 Safe Blocking in Request Chains
This subsection describes how we determine whether blocking a
script request is likely to break a page. We use this technique to
determine how “high” in each request chain we can block, with
the goal of determining the earliest “upstream” request we can
block in a request chain without breaking the page. Our approach
is “conservative” (i.e. prefers false negatives over false positives),
under the intuition that users would prefer a working, ad-�lled
page, over a broken, ad-less page.

3.5.1 Determining Page Breakage. We use a pair of simple heuris-
tics to determine whether blocking a script is likely to break a page.
These heuristics are designed to distinguish scripts that only in-
ject ads into pages from scripts that perform more complex, and
hopefully user serving, page operations.

(1) If a script creates more than two subtrees in the document,
we consider it unsafe to block.

(2) If a script inserts another script that matches condition #1,
we consider it unsafe to block.

5

Project In a Nutshell
● Image and Frame Classifier 

Heavy, offline, contextual 

● Block High in Request Chain 
e.g. PageGraph to determine request causes 

● Don’t Break Pages 
e.g. PageGraph to understand impact of blocking 

● Generate AdBlock Compatible Rules 
e.g. shippable and shareable

92

URLs → Filter Rules
1. Take URL 

 

2. Reduce to eTLD+1 
 

3. Remove query params and
fragment 

4. Remove protocol

1. https://a.good.example.com/
ad.html#banner?id=3  

2. https://example.com/
ad.html#banner?id=3  

3. https://example.com/ad.html 
 

4. ||example.com/ad.html

93

https://example.com/ad.html

94

Country Current Lists Classifier ∪ Chains ∆

Albania 3,021 451 521 17.2%

Hungary 2,619 549 736 28.1%

Sri Lanka 2,204 512 644 29.2%

Total 7,844 1,512 1,901 24.2%

Take Aways…
● Filter lists are good (if not great) 

● Right now they fail folks who need
the most 

● ML + serious consideration can
help 

● Brave will be shipping soon

95

Overview
● PageGraph 

Novel, open source, DOM attribution system 

● Behavioral Blocking 
Protecting Privacy Beyond URLs 

● Regional Filter List Generation 
Privacy protection for users in underserved regions 

● Automated Web Compatibility Testing 
Making sure we’re only breaking bad stuff…

96

Michael Smith - mds009@ucsd.edu 
University of California at San Diego 97

Automated WebCompat: In A Slide…
● Brave makes aggressive modifications 

And not just Brave… 

● We’re Flying Blind  
Privacy community only has vague intuitions if / when we’re breaking things 

● This Hurts Privacy 
Uncertainty -> risk averseness, hard to iterate to improvements 

● This Makes People Want Other Problems  
Brenden’s Twitter blows up, I work late, my plants die 😥

98

99

= 👍

100

= 👍

= 👎

WebCompat Problem Cavalcade
● Missing desired images 

● Missing / broken event registrations 

● Media playback 

● Navigation problems 

● Unstyled content 

101

● Authentication 

● Broken redirections 

● Missing embedded content 

● Form submissions 

● Etc etc etc etc etc (etc!) 
 

What Makes Web Compat Difficult
● Existing work focuses on fulfilling promises to site owners

○ Web Platform Tests: https://github.com/web-platform-tests/wpt

○ WebCompat.org: https://webcompat.com/

○ etc… 

● We want to measure subjective user experience
○ “If I break standard X, will users get upset” 

● Limited existing work
○ Academic work is useful but naive

○ Remaining, subjective work has to do with accessibility

102

https://github.com/web-platform-tests/wpt
https://webcompat.com/

Bounding the Problem (First Cut)
● Recall > Precision 

● Top level frame and local frames 

● Target things that are broken from the get go

103

Random script

104

Tracking script

105

jQuery

106

Take Aways…
● Privacy community is drowning in

suggestions 

● We ignore half the ledger

● Useable privacy -> More privacy

107

Wrapping Up
● PageGraph 

Novel, open source, DOM attribution system 

● Behavioral Blocking 
Protecting Privacy Beyond URLs 

● Regional Filter List Generation 
Privacy protection for users in underserved regions 

● Automated Web Compatibility Testing 
Making sure we’re only breaking bad stuff…

108

Internships
● Research focused 

Papers published at S&P, WWW, USENIX, MADWeb, etc. 

● Engineering focused 
Shipping features to related to measurement, improved blocking, detection,
and more 

● San Francisco and London offices 
https://brave.com/careers/?gh_jid=896018

109

https://brave.com/careers/?gh_jid=896018

Pete Snyder

Privacy Researcher 
pes@brave.com 
@pes10k

110

•Brave is Uniquely Doing 
Deployment-Minded Privacy Research  

•Short Term: Better Regional Filter Lists 

•Medium Term: Behavioral Based Blocking 

•Long(ish) Term: Automatic WebCompat

Thank You

