Who Filters the Filters:
Understanding the Growth, Usefulness and Efficiency of Crowdsourced Ad Blocking

Pete Snyder – Brave Software
Antoine Vastel – University of Lille / INRIA
Ben Livshits – Brave Software / Imperial College London
The talk in a slide…

- Many web and privacy tools use crowdsourced lists
 - ABP
 - UO
 - Firefox
 - Opera
 - Chrome
 - Privacy

- How these lists are maintained is poorly understood
 Who decides what goes in? What comes out? What exceptions exist? etc…

- Web measurement of EasyList
 - Most popular list
 - Mostly “dead weight”, 90.16% of rules unused
 - 10k website measurement over 2+ months → practical optimizations
 - How do advertisers & trackers respond?
Overview

- **Context and Background**
 What, why and how of EasyList

- **Methodology**
 Web scale measurement over two months

- **Measurement Results**
 Whats used and unused, rule lifecycle, how do trackers respond, etc?

- **Applications**
 Mobile and extension optimizations

- **Discussion and Conclusion**
Overview

- **Context and Background**
 What, why and how of EasyList

- **Methodology**
 Web scale measurement over two months

- **Measurement Results**
 Whats used and unused, rule lifecycle, how do trackers respond, etc?

- **Applications**
 Mobile and extension optimizations

- **Discussion**
Context and Background

- EasyList is the most popular list
- Targets ads and tracking from advertisers
- Text format, RegEx-like format
- EasyList is a large project, 15 years of contributions
- Targets English and “global” sites
- Many different rules, acting on different layers
EasyList Types of Rules

- **Network rules**
  ```
  ||example.org/ad
  ```

- **Element rules**
  ```
  site.com###iframe
  ```

- **Exception rules**
  ```
  @@||example.org/advice
  ```

- **Filters**
  ```
  ||example.org^script
  ```
EasyList Over Time

- 2005: Started by Rick Petnel
- 2009: Moves to GitHub
- 2013: Merges with “Fanboy’s list”
- 2019: Reaches 72,469 rules
- 2020 (May): Shrinks to ~69k
Rule “Life Cycle”

- Measurement of how long a rule stays in the List
- Measured using git commit history
- ~50% rules remain for > ~4 years
Who Contributes To EasyList

- From forum and GitHub
- Five main contributors: 76.87% of commits
- Many small contributors: 65.3% of contributors made <= 100 commits
Also in the Paper…

- How commit history was tracked across project structure changes
- How often commits are made
- How other tools use EasyList
- Tooling details
Overview

● Context and Background
 What, why and how of EasyList

● Methodology
 Web scale measurement over two months

● Measurement Results
 Whats used and unused, rule lifecycle, how do trackers respond, etc?

● Practical Applications
 Mobile and extension optimizations

● Discussion and Conclusion
Measurement Goals

- **Broad Goal:** Understand how EasyList and the web interact

- **Sub Goals:**

 - How is “rule usefulness” distributed?

 - Relationship between rule age and rule usefulness?

 - How to advertisers respond to being listed?
Methodology

- **Instrument a browser:**
 Record all network requests when visiting a page

- **Representative automated crawl**
 Both popular and unpopular websites

- **Apply EasyList to crawl data:**
 Determine what would be blocked if that day’s EasyList was applied
Browser Instrumentation

- **Stock Chromium:**
 Current stable version of Chromium at time of measurement

- **Puppeteer automation:**
 Record all URLs fetched, along with response type, hash and body size

- **Passive instrumentation:**
 No changes to page loading or resource requesting

- **No measurement of page contents:**
 Omitted measurements of element hiding rules
Representative Automated Crawl

- **Web domain selection:**
 - “Popular”: Alexa 5k
 - “Unpopular”: Random selection from Alexa 5,000-1m

- **Page selection:**
 Measured landing page, and three same-eTLD+1 links

- **Measurement times:**
 - Every day for 74 days
 - Measured each page for 30 seconds

- **Passive measurement:**
 No changes to page loading or resource requesting
https://cnn.com
30 sec

...
<table>
<thead>
<tr>
<th>Fetched Page</th>
<th>Requested Sub-Resources</th>
<th>EasyList Rule</th>
</tr>
</thead>
</table>
Applying EasyList to Crawl Data

<table>
<thead>
<tr>
<th>Fetched Page</th>
<th>Requested Sub-Resources</th>
<th>EasyList Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>https://cnn.com</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Applying EasyList to Crawl Data

<table>
<thead>
<tr>
<th>Fetched Page</th>
<th>Requested Sub-Resources</th>
<th>EasyList Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• https://cnn.com/ad/img.png</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• https://doubleclick.com/iframe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• https://cnn.com/js/script.js</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ...</td>
<td></td>
</tr>
</tbody>
</table>
Applying EasyList to Crawl Data

<table>
<thead>
<tr>
<th>Fetched Page</th>
<th>Requested Sub-Resources</th>
<th>EasyList Rule</th>
</tr>
</thead>
</table>
• https://cnn.com/ad/img.png
• https://doubleclick.com/iframe
• https://cnn.com/js/script.js
• ... | •
• */ad/*
• ||doubleclick.com^
• ... |
On Omitting Element Rules

- Noted network and exception rules
 Did not include element (i.e., cosmetic) rules

- Reasoning
 - Measurement focus is on privacy and performance
 - Highly variable and dependent on user interaction
 - Many EasyList consuming tools also omit them (e.g., Privoxy, PiHole)
Summary

- Instrumented automated Chromium
- Visited 10k sites (5k popular, 5k unpopular)
- Recorded:
 - Domains visited
 - Subpages visited
 - Resource requests and responses
 - Matching EasyList network rules
Overview

- **Context and Background**
 What, why and how of EasyList

- **Methodology**
 Web scale measurement over two months

- **Measurement Results**
 What's used and unused, rule lifecycle, how do trackers respond, etc?

- **Applications**
 Mobile and extension optimizations

- **Discussion and Conclusion**
Measurement Results

- **Study period:**
 July 24th → October 5th, 2018

- **Unresponsive domains:**
 400 domains never replied

- **3.74 pages per domain:**
 Difference b/c single page apps, CF CAPTCHA, etc.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td># days</td>
<td>74</td>
</tr>
<tr>
<td># domains</td>
<td>10,000</td>
</tr>
<tr>
<td># non-responsive domains</td>
<td>400</td>
</tr>
<tr>
<td>Avg # pages per day</td>
<td>29,776</td>
</tr>
<tr>
<td>Avg # pages per domain per day</td>
<td>3.74</td>
</tr>
<tr>
<td>Total # pages measured</td>
<td>3,260,479</td>
</tr>
</tbody>
</table>
Proportion of EasyList Rules Used

- **Measurement**
 % of rules used at least once during the entire experiment

- **Most rules were not used**
 90.16% never applied
 5.39% used >= 100 times

- **Domain popularity not sig**
Relationship of Rule Age and Usefulness

- **Measurement:** Are newer rules more useful?

- **Answer:** Mixed, but mostly no

- New and old rules are used at least once equally

- Most blocking is done by old rules

<table>
<thead>
<tr>
<th></th>
<th>Added during experiment</th>
<th>Added before experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute #</td>
<td>2,002</td>
<td>37,826</td>
</tr>
<tr>
<td>% used at least once</td>
<td>9.45%</td>
<td>9.84%</td>
</tr>
<tr>
<td>Use frequency (of those used at least once)</td>
<td>0.65 per day</td>
<td>6.14 per day</td>
</tr>
</tbody>
</table>
Advertiser Reactions

- **Methodology:**
 - Same resource, multiple URLs, only some blocked
 - Non-blocked URLs occurred after relevant rule
 - Compare URLs to observe why not blocked
Advertiser Reactions

- **Methodology:**
 - Same resource, multiple URLs, only some blocked
 - Non-blocked URLs occurred after relevant rule
 - Compare URLs to observe why not blocked

\[T_0 \quad | \quad T_1 \quad | \quad T_2 \]

- a.com/ad-script.js
- b.com/ad-script.js
- c.com/ad-script.js
Advertiser Reactions

- **Methodology:**
 - Same resource, multiple URLs, only some blocked
 - Non-blocked URLs occurred after relevant rule
 - Compare URLs to observe why not blocked

<table>
<thead>
<tr>
<th></th>
<th>T₀</th>
<th>T₁</th>
<th>T₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.com</td>
<td>a.com/ad-script.js</td>
<td>New Rule:</td>
<td>/ad-script.js</td>
</tr>
<tr>
<td>b.com</td>
<td>b.com/ad-script.js</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.com</td>
<td>c.com/ad-script.js</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Advertiser Reactions

- **Methodology:**
 - Same resource, multiple URLs, only some blocked
 - Non-blocked URLs occurred after relevant rule
 - Compare URLs to observe why not blocked

<table>
<thead>
<tr>
<th>T_0</th>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
</table>
| a.com/ad-script.js
b.com/ad-script.js
c.com/ad-script.js | New Rule:
/ad-script.js | a.com/ad-script.js
b.com/ad-script.js
c.com/sneaky.js |
Advertiser Reactions

- **Methodology:**
 - Same resource, multiple URLs, only some blocked
 - Non-blocked URLs occurred after relevant rule
 - Compare URLs to observe why not blocked

<table>
<thead>
<tr>
<th>T_0</th>
<th>T_1</th>
<th>T_2</th>
</tr>
</thead>
</table>
| a.com/ad-script.js
b.com/ad-script.js
c.com/ad-script.js | New Rule:
/ad-script.js | a.com/ad-script.js
b.com/ad-script.js
c.com/sneaky.js
V.S.
c.com/sneaky.js |
Advertiser Reactions

- **Changing domain:**
 tracker.com/script.js → benign.com/script.js

- **Move to 1st party:**
 google-analytics.com/ga.js → cnn.com/ga.js

- **Remove “ad” keyword:**
 example.org/ads/shoes.png → example.org/images/shoes.png

- **Remove dimensions:**
 example.org/shoes-320x240.png → example.org/shoes-standard.png
Advertiser Reactions

Number of evasions detected

Evasion strategies

- Change domain: 1600
- Move to 1st party
- Remove "ad" keyword
- Remove dimensions
Also in the Paper…

- How quickly advertisers respond to new rules?
 Most don’t…

- Statistical correlation between rule age and use frequency
 Significant positive correlation

- Specific examples of filter list evasions
 We name names…
Overview

- **Context and Background**
 What, why and how of EasyList

- **Methodology**
 Web scale measurement over two months

- **Measurement Results**
 What's used and unused, rule lifecycle, how do trackers respond, etc?

- **Applications**
 Mobile and extension optimizations

- **Discussion and Conclusion**
Applications

- **Mobile content blocking**
 Fitting filter lists in mobile devices, performantly

- **Improving performance of extensions**
 Left for the paper
Applications

- **Mobile content blocking**
 Fitting filter lists in mobile devices, performantly

- **Improving performance of extensions**
 Left for the paper
Mobile Content Blocking

- **Two related problems**
 - iOS limits to 50k rules
 - Compiling rules is slow on first load

- **Its not only EasyList...**
 - EasyPrivacy
 - Regional lists

- **Solution**
 - Use crawl data to identify likely useful rules
 - Only load those rules on iOS
 - “Slim List”
Mobile Content Blocking

![Graph showing the average compilation time for different devices with varying numbers of rules to compile. The devices include iPhone X, iPad 10.5, and iPhone 6s.](image)

- **Y-axis:** Average compilation time (second)
- **X-axis:** Number of rules to compile
- **Legend:**
 - Blue: iPhone X
 - Orange: iPad 10.5
 - Green: iPhone 6s

The graph illustrates the performance of different devices in terms of average compilation time as the number of rules to compile increases.
Mobile Content Blocking

![Graph showing the average compilation time for different numbers of rules to compile, comparing iPhone X, iPad 10.5, and iPhone 6s devices. The x-axis represents the number of rules (1,000 to 40,000), and the y-axis represents the average compilation time (in seconds). The graph highlights the differences in performance between the three devices.]

Full EasyList

“Useful” subset

Number of rules to compile

Average compilation time (second)

- iPhone X
- iPad 10.5
- iPhone 6s
Mobile Content Blocking

Average compilation time (second)

Number of rules to compile

- iPhone X
- iPad 10.5
- iPhone 6s

Full EasyList
Applications

- **Mobile content blocking**
 Fitting filter lists in mobile devices, performantly

- **Improving performance of extensions**
 Left for the paper
Overview

● Context and Background
 What, why and how of EasyList

● Methodology
 Web scale measurement over two months

● Measurement Results
 What's used and unused, rule lifecycle, how do trackers respond, etc?

● Applications
 Mobile and extension optimizations

● Discussion and Conclusion
Limitations And Future Work

● **Web site selection generalizability**
 We assume interactivity isn’t vital
 We assume “shallow” pages are similar to “deep” pages

● **Web region and language generalizability**
 We assume measuring from US IP generalizes
 We assume good division between English / global EasyList and regional lists

● **Varying resource blocking importance**
 We assume all blocking is equally useful
 We assume vital, security level protections are dealt with through other means
Summary

- First measurement of how EasyList affects the web
- Broadly used, maintained by five people
- >90% of EasyList provides little benefit
- Quantified taxonomy of filter list evasion
- Measurement allows for use on mobile
Summary and Thank You!

- First measurement of how EasyList affects the web
- Broadly used, maintained by five people
- >90% of EasyList provides little benefit
- Quantified taxonomy of filter list evasion
- Measurement allows for use on mobile

Pete Snyder (@pes10k) – Brave Software
Antoine Vastel – University of Lille / INRIA
Ben Livshits – Brave Software / Imperial College London