
Unbundle-Rewrite-Rebundle: Runtime Detection and Rewriting
of Privacy-Harming Code in JavaScript Bundles

Mir Masood Ali
University of Illinois Chicago

Chicago, USA

Peter Snyder
Brave Software

San Francisco, USA

Chris Kanich
University of Illinois Chicago

Chicago, USA

Hamed Haddadi
Imperial College London & Brave Software

London, UK

ABSTRACT
This work presents Unbundle-Rewrite-Rebundle (URR), a system
for detecting privacy-harming portions of bundled JavaScript code
and rewriting that code at runtime to remove the privacy-harming
behavior without breaking the surrounding code or overall applica-
tion. URR is a novel solution to the problem of JavaScript bundles,
where websites pre-compile multiple code units into a single file,
making it impossible for content filters and ad-blockers to differen-
tiate between desired and unwanted resources. Where traditional
content filtering tools rely on URLs, URR analyzes the code at the
AST level, and replaces harmful AST sub-trees with privacy-and-
functionality maintaining alternatives.

We present an open-sourced implementation of URR as a Fire-
fox extension and evaluate it against JavaScript bundles generated
by the most popular bundling system (Webpack) deployed on the
Tranco 10k. We evaluate URR by precision (1.00), recall (0.95), and
speed (0.43s per script) when detecting and rewriting three rep-
resentative privacy-harming libraries often included in JavaScript
bundles, and find URR to be an effective approach to a large-and-
growing blind spot unaddressed by current privacy tools.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
Web privacy; Content blocking

ACM Reference Format:
Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi. 2024.
Unbundle-Rewrite-Rebundle: Runtime Detection and Rewriting of Privacy-
Harming Code in JavaScript Bundles. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3658644.3690262

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690262

1 INTRODUCTION
An enormous body of research has establishedWeb content filtering
(e.g., blocking advertising, tracking, and other unwanted network
requests on websites) as an important and effective technique for
improving privacy[11, 20], security[16, 32], and performance[10,
24]. Most Web content filtering approaches rely on crowd-sourced
lists of regular-expression-like rules that describe which URLs the
browser should load and which should be blocked.

This approach—broadly, URL-based content filtering—works be-
cause URLs, in practice, provide useful and stable information about
the resources theymap to. In some cases, this is because of the text in
the URL (e.g., browsers can make a reasonable guess about the pur-
pose of JavaScript returned from aURL like (https://advertising
.example/tracker.js), or because experts have manually evalu-
ated the resource returned from a URL and found it to be similarly
harmful to users.

However, modern Web development practices make URL-based
content filtering increasingly difficult. Previously, Web applica-
tions were often delivered as a collection of discrete JavaScript
files, each fetched independently from their own URL (e.g., /scrip-
t/library.js, /script/tracker.js,/script/app.js), which al-
lowed URL-based content filtering tools to easily block some parts
of an application, but not others. Increasingly, though, developers
integrate bundling tools as part of their build and deployment prac-
tices, compiling all of the libraries and application code into a single
file unit, which is delivered to the browser from a single URL (e.g.,
/script/bundle.js).

These bundling approaches, inadvertently or otherwise, circum-
vent URL-based content filtering tools. When applications are de-
livered as a single bundled code unit, URL-based filtering tools
can no longer block just parts of the application; blocking a site’s
JavaScript becomes an all-or-nothing proposition. And since block-
ing all JavaScript on a page breaks useful functionality on many
sites, in practice, content filtering tools are reduced to blocking
nothing, reintroducing the privacy, security, and performance is-
sues the user wanted to avoid in the first place.

This work presents the design and implementation of Unbundle-
Rewrite-Rebundle (URR), a system to enable content blocking in
modern Web applications, even when Web applications are de-
ployed as a compiled, single file JavaScript bundle. In other words,
URR aims to enable browsers to avoid executing the code from

https://doi.org/10.1145/3658644.3690262
https://doi.org/10.1145/3658644.3690262

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

/script/tracker.js, while still executing the non-privacy harm-
ing code originally provided in /script/library.js and /scrip-
t/app.js, even when all three libraries are bundled and delivered
in /script/bundle.js.

URR is a novel, practical solution to a problem that a vein of
related Web privacy research has explored. Works like [2] iden-
tify that bundled applications are widespread and pose a serious
challenge to Web privacy, and [27] found that blocking these bun-
dled JavaScript resources often broke the benign, desirable parts of
websites. Systems like [28] showed that bundled applications could
be automatically rewritten to prevent privacy harm, though with
expensive precomputation, which rendered practical deployment
prohibitive. URR is a first-in-class approach to solving the privacy
and security harms caused by bundled JavaScript applications in a
performant and practical method.

To do so, URR solves several non-trivial challenges:
First, the system must identify known privacy-harming code

(e.g., the code delivered from /script/tracker.js) within the
larger bundled application, without any information about the URL
from which the code originally came. This identification must be
robust even across the kinds of code modifications and transfor-
mations JavaScript bundlers make in their build processes (e.g.,
minification, dead-code elimination, tree-shaking).

Second, URR must remove known-privacy-harming code from
the bundled application without breaking desirable functionality
in the surrounding code. Just deleting unwanted libraries from a
bundled application will, in practice, be counter-productive since
the applicationwill fail when trying to access now-deleted functions
and classes defined by the deleted library. A useful solution must
remove the unwanted, target libraries from the bundled application
without breaking surrounding code.

Third, such a system must be performant and be able to Unbun-
dle, analyze, modify, and reconstitute bundled Web applications
at runtime, and quickly, in a way that maintains the usefulness
of the Web application. If the performance overhead of a privacy-
and-security preserving system is too costly, then the system is, in
practice, unusable and so not meaningfully useful to benefit users.

URR is implemented in several parts: i. as a database of sig-
natures of ASTs of real-world known-privacy-harming code, ii.
a library of crowd-sourced privacy-preserving alternative imple-
mentations of privacy-harming code designed to remove privacy
harming behaviors without impacting the surrounding application
code, iii. a browser extension that, at runtime, decomposes a bun-
dled JavaScript application into its constituent libraries, detects the
sub-ASTs from the bundled application that come from known-
privacy-harming libraries and rewrite the bundled application with
the stub libraries in place of the privacy-harming versions.

More broadly, this work makes the following contributions to
Web privacy and security.
(1) A novel algorithm for efficiently generating fingerprints of bun-

dled modules within JavaScript libraries. These fingerprints
are robust to many of the modifications that bundling tools
make during their complication process (e.g., label minification,
“tree-shaking”).

(2) An open-sourced, empirically tuned system for:
(a) unbundling applications into their constituent libraries

(b) generating fingerprints for each sub-library and checking
them against a database of known unwanted JavaScript li-
braries

(c) replacing unwanted JavaScript libraries with compatibility-
preserving “shim” implementations, which maintain the li-
brary’s API “shape”, while removing any privacy-or-security
affecting behaviors

(d) reconstituting the resulting new application into a new bun-
dle that can then be passed to the browser’s JavaScript engine
for normal execution.

(3) An empirical evaluation of the accuracy and performance of our
system when applied to a representative crawl of the Web, find-
ing that our system results in libraries being blocked on 7% of
the top 10K sites in the Tranco list within practical performance
bounds.

(4) An open-source implementation of our system as a Firefox ex-
tension, along with the complete dataset for all discussed figures
and measurements, available at https://github.com/masood/urr.

2 BACKGROUND
This section first provides a primer on concepts relevant to bundling
and their use in web development. It then presents a simple ex-
ample that highlights the limitations of existing content-blocking
approaches. The section concludes by outlining the properties of
an effective solution.

2.1 Bundles and Relevant Concepts
As websites and web applications grow more complex, they require
a plethora of functionality, often aided by numerous libraries and
dependencies. Handling these dependencies can prove to be quite
strenuous, especially when considering the range of platforms on
which the code needs to execute correctly. JavaScript bundlers are
essential tools used by web developers to streamline the handling
of code and dependencies within complex web applications. At its
core, a JavaScript bundler is a utility that gathers and wraps code
from multiple JavaScript files. Bundles not only reduce the number
of network requests required to load a web page but also optimize
the handling of dependencies and various aspects of development
and production environments. The simplicity of the example hides
certain nuances necessary to understand the complexity of bundles.
Below, we introduce a few fundamental concepts that can help
better understand JavaScript bundles.

2.1.1 Modular Programming. Web developers design and create
websites in different environments than browsers. These environ-
ments have their own caveats and follow different programming
concepts and philosophies. Modular programming is a general pro-
gramming concept where developers separate complex application
code into independent pieces called modules. A module forms the
atomic unit of a bundle and roughly corresponds to a code snip-
pet relevant to a file or library that exports functionality that is
consumed by other modules. Popular JavaScript development envi-
ronments like Node.js1 adopt a modular programming approach.
Developers can create their own modules and use reuse modules
available in the npm registry2.
1https://nodejs.org/en/
2https://www.npmjs.com/

https://github.com/masood/urr
https://nodejs.org/en/

Unbundle-Rewrite-Rebundle CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

2.1.2 JavaScript Module Systems. Like development environments
and programming approaches, JavaScript module systems are also
not a monolith. Depending on the context in which they are con-
sumed and executed, JavaScript modules express functionality in
different ways. The twomost popular module systems for JavaScript
are (1) the ECMAScript modules (ESM), which are consumed with
import statements, and (2) CommonJS (CJS) modules, which are
consumed with require statements. While Node.js supports both
types of modules, web browsers only recognize import statements.
Bundles, therefore, include wrappers around modules and provide
workarounds for require statements within web browsers.

2.1.3 Inter-module Dependencies. Larger projects include multiple
libraries and packages and, as a result, comprise numerous interde-
pendent modules. When bundles gather and parse all the modules
that need to be combined, they create a dependency graph that
helps determine (1) the order and chain of dependencies between
modules and (2) which code snippets can be combined within a
module and which snippets need to be split across multiple modules.

2.1.4 Minification. Bundlers additionally perform a code transfor-
mation step that reduces the overall size of the code. Depending
on various configuration and optimization options, minification
returns an irreversible code output containing randomized, uniden-
tifiable variable names and changes to the code syntax that only
retains its underlying logic.

2.1.5 Source Maps. During development, bundles provide source
maps as a key to reverse minification and debug parts of code. These
files help map minified code back to their unminified counterparts
and, hence, identify individual modules. However, source maps are
unavailable by default in production, making it difficult to reverse
engineer bundled code in the wild.

2.1.6 Popular Bundlers. Examples of popular JavaScript bundlers
includeWebpack3, Browserify4, Rollup5, and Parcel 6, each of which
offer unique features and advantages. In this work, we focus onWeb-
pack because it is the most popular and mature JavaScript bundler
as determined from GitHub stars7, NPM weekly downloads8, and
prior work [25].

2.1.7 General Structure of Webpack Bundles. Listing 1 presents an
example of a script comprising a webpack bundle. We describe the
example below.

➤ Webpack wraps the bundled code in an Immediately Invoked
Function Expression (IIFE). As a result, the bundle is executed
as soon as it is loaded, thereby making all necessary functions
and variables available in the global scope.

➤ The bundle comprises a modular system where each module is
represented as a function in an array or object of modules.
Listing 1 contains a module array in L30-42.

➤ Function wrappers around each module handle dependen-
cies on other modules and gather any variables and functions
exported by the module.

3https://webpack.js.org/
4https://browserify.org/
5https://rollupjs.org/
6https://parceljs.org/
7https://github.com/webpack/webpack
8https://www.npmjs.com/package/webpack

1 (function (modules) {
2 // The module cache
3 var installedModules = {};
4
5 // The require function
6 function __webpack_require__(moduleId) {
7 // Check if module is in cache
8 if (installedModules[moduleId]) {
9 return installedModules[moduleId]. exports;
10 }
11 // Create a new module (and put it into the

cache)
12 var module = (installedModules[moduleId] = {
13 exports: {},
14 });
15
16 // Execute the module function
17 modules[moduleId].call(
18 module.exports ,
19 module ,
20 module.exports ,
21 __webpack_require__
22);
23
24 // Return the exports of the module
25 return module.exports;
26 }
27
28 // Load entry module and return exports
29 return __webpack_require__ (0);
30 })([
31 /* 0 */
32 function (module , exports , __webpack_require__)

{
33 const hello = __webpack_require__ (1);
34 console.log(hello.sayHello("Webpack"));
35 },
36 /* 1 */
37 function (module , exports) {
38 exports.sayHello = function (name) {
39 return "Hello , " + name + "!";
40 };
41 },
42]);

Listing 1: A non-minified example of a webpack bundle.

➤ The __webpack_require__ function (Listing 1, L6-26) loads and
executes modules andmanages exports and dependencies.

➤ The bundle executes an entry point module (module 0 in List-
ing 1). The entry point module uses __webpack_require__ to
load functionality from other modules (Listing 1, L33).
Overall, bundlers allow developers to organize their code into

modules, manage dependencies, and apply various optimizations
like minification and code splitting, resulting in more efficient,
maintainable, and faster-loading web applications.

2.2 Motivating Example
In this section, we present an example that shows how typical
content-blocking approaches work and why they are ineffective
against bundles.

2.2.1 Generic Code Inclusion. Consider the toy example presented
on the left half of Figure 1. Here, the website loads two scripts,
each of which defines global functions. The first script, setup.js,
loads from the website’s domain itself and contains benign code
relevant to the website’s functionality. The second script, track.js,
loads from a known tracking domain, tracker.com, and returns a
script that creates a unique identifier to track the user. When the
website includes the two scripts from two separate <script> tags,

https://webpack.js.org/
https://browserify.org/
https://rollupjs.org/
https://parceljs.org/
https://github.com/webpack/webpack
https://www.npmjs.com/package/webpack

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

<script
 src="/setup.js">
</script>

<script
 src="tracker.com/track.js">
</script>

<script>
 setup();
 track();
</script>

website.com

tracker.com

Filter List

<script
 src="bundle.js">
</script>

website.com

setup.js

track.js

setup();
track();

Filter List

Figure 1: Motivating example.

it triggers two network requests, one to website.com and another
to tracker.com.

2.2.2 Typical Content Blocking Approach. A typical approach to
blocking privacy-harming scripts involves the use of a curated list
of domains and regular expressions (for example, from EasyList,
EasyPrivacy9). These lists are developed from manual contribu-
tions and include domains and paths to known privacy-harming
resources. Content blocking tools (e.g., AdBlock, uBlock) pull from
these filter lists. The tools intercept outgoing network requests,
compare them against entries in filter lists, and create interventions
if they find a match. In the toy example, a filter list contributor
might add the rule ||tracker.com/track.js. Thereafter, when
the website creates two network requests, the content-blocking
tool permits a request to script.js but blocks the request to
tracker.com/track.js. This way, the privacy-harming script is
neither loaded nor executed in the user’s browsing session.

2.2.3 Limitations of Existing Content Blocking Approaches. Con-
sider the scenario presented in the right half of Figure 1. Unlike the
previous example, the website includes a single <script> tag that
fetches code from its own server. The resulting network request
does not have a corresponding entry in the filter list and is, there-
fore, not blocked by the content-blocking tool. The server responds
with a bundled script that includes both benign code (setup())
and privacy-harming code (track()). Bundled resources expose
multiple shortcomings of existing content-blocking approaches,
which we briefly describe below.

➤ Privacy-harming code can be fetched frommultiple, variable
resource paths, including from first-party domains, making
it impossible for contributors to manually detect and curate a
comprehensive, non-exhaustive list of entries.

➤ Bundles include code frommultiple resources. As a result, privacy-
harming code is embedded along with necessary and benign
functionality. Blocking the network request itself can break the
website. Existing approaches must adopt an approach that targets
embedded resources instead of the entire resource itself.

➤ Bundles alsomutate code included in moduleswith wrappers
and through various minification and obfuscation techniques.
These mutations make it difficult to identify content with com-
parisons against regular expressions.

9https://easylist.to/

2.3 Properties of an Ideal Solution
We outline the properties of a general solution to identifying and
replacing privacy-harming modules from bundled scripts.

First, a robust solution should be able to identify and target
specific modules. Unlike typical content-blocking approaches,
the solution cannot rely on domain-based blocking or attempt to
replace the script entirely.

Second, as a corollary to the previous point, the solution should
have limited impact on benign functionality, i.e., the solution
should limit the effect of its intervention to privacy-harming code,
leaving execution of other modules untouched. This also involves
ensuring that any dependencies on the targeted module are handled
in a way that limits side effects.

Third, the solution should be generalizable across multiple
dimensions. It should apply to multiple privacy-harming libraries
(and multiple versions of libraries) that interest content-blocking
tools. Additionally, it should also be generalizable to different bundling
strategies and robust against minification and obfuscation tech-
niques.

Finally, the solution should have a limited performance over-
head. While the solution executes in real-time, i.e., as scripts are
loaded and executed in the browser, it needs to limit its effect on
the usability of websites.

3 UNBUNDLE-REWRITE-REBUNDLE DESIGN
Unbundle-Rewrite-Rebundle (URR) adopts a static analysis approach
that leverages the code structures of privacy-harming modules to
identify and neutralize them when embedded in bundled scripts
without disrupting the functionality of other application compo-
nents. URR adopts a four-step process (see Figure 2):

➤ First, URR generates an Abstract Syntax Tree (AST) representa-
tion of a given script. It then analyzes the structure to identify if
the script is a bundle that comprises one or more modules. If so,
URR gathers the component modules for further analysis.

➤ Next, URR processes each module into an implementation agnos-
tic representation, i.e., stripping variable names, function names,
and object properties. It creates a bottom-up hash of the AST
structure and uses the resulting representation for comparison.

➤ Next, URR compares each processed module against previously
generated representations of privacy-harming modules. If URR
finds a match, it marks the corresponding module for replace-
ment.

https://easylist.to/

Unbundle-Rewrite-Rebundle CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Script

Abstract
Syntax Tree

Process modules Compare modules2 31 Gather modules

Determine if script
is a bundle

Extract constituent
modules

Regenerate
Script

Replace modules4

Replace target
module

Generate AST

H() H()
H() H()

Hash modules

Gather top-level
nodes

H()
H()

H()
H()

Compare nodes
against target module

H()
H()

H

H()=

Identify target
module

H()

Figure 2: Overview of the framework.

➤ Finally, URR replaces each marked privacy-harming module with
a corresponding benign replacement. In doing so, URR ensures
that access and use of the replacement does not break other parts
of website functionality. It then stitches the bundled script and
moves it along for consumption and execution.
All the steps mentioned above are performed in real-time, i.e.

when resources are loaded in the user’s browser. However, pro-
cessed representations of target modules and benign replacements
are created and gathered offline.

3.1 Gathering Modules
URR first generates an Abstract Syntax Tree (AST) representation of
a JavaScript resource. The AST representation helps gather the syn-
tactic features of the script and provides insight into the structure
of the code.

Thereafter, URR uses the AST representation to determine two
aspects of the loaded script. First, URR determines if the script
comprises a bundle with one or more modules. Second, URR gathers
the sub-trees corresponding to each identified module.

Below, we describe the webpack-specific implementation.

3.1.1 Gathering JavaScript resources. To create a valid parser for
bundles in the wild, we gathered examples of resources loaded on
popular websites. We developed a puppeteer-based crawler that,
upon visiting a page, intercepts network requests and stores a copy
of observed script responses. We visited domains from the Tranco
list [15] and gathered 30,930 scripts from 1,063 sites (1K crawl).

3.1.2 Generating ASTs. For each of the gathered scripts, URR uses
acorn, a community-developed, open-source JavaScript parser to
generate an AST10. The generated AST complies with the ESTree
Spec to ensure a consistent, standardized representation that can
be reproduced by alternative implementations11.

3.1.3 Code Development and Refinement Methodology. We began
with an understanding of the general structure of the output of a
webpack bundle (see Listing 1). We developed a script that parses an
10https://github.com/acornjs/acorn
11https://github.com/estree/estree

AST and looks for a module array or object, i.e., an array or object
that comprises functions. We used this initial logic and adopted a
code optimization methodology based on ground truth gathered
through expert manual annotation. We describe the process below.
(1) First, we randomly sampled 100 scripts (without replacement)

from the JavaScript resources gathered during the 1K site crawl.
(2) We manually evaluated the plaintext script and the AST of each

sampled resource. In doing so, we checked for the presence of
webpack-specific code patterns. We annotated each resource
with a boolean value indicating whether we determined the
script as a webpack bundle (Annotation 1). Note that these
manual checks (e.g.,keywords) were only used for annotation
and not incorporated into the automated approach. The manual
checks included:

(a) identification of code pattern similar to webpack’s specific
function that handles dependencies (see Listing 1, L6-26);

(b) identification of code patterns specific to webpack chunks, i.e.,
files comprising webpack modules separate from the entry
point bundle;

(c) identification of objects and arrays specific containing func-
tions with parameters, exports, and return statements similar
to webpack’s function wrappers;

(d) keyword searches that indicate the use of webpack in the use
of webpack in the creation of the resource.

(3) For any resource annotated as a webpack bundle, we also anno-
tated the resource with the number of component modules we
identified (Annotation 2).

(4) We repeated Steps 1-3 until at least we had annotated 100 scripts
as webpack bundles.

(5) We then executed our code to automatically analyze and anno-
tate each sampled resource in a similar manner, i.e., (a) Anno-
tation 1: whether the script is a bundle, and (b) Annotation 2:
the number of component modules identified in the script.

(6) We compared the code-generated annotations against the man-
ual annotations and gathered the set of differences. For each
incorrectly labeled script, we analyzed the code outputs and
refined its logic. Refinements included addressing edge cases,
handling multiple IIFEs in a single resource, etc.

https://github.com/acornjs/acorn
https://github.com/estree/estree

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

Table 1: Refining code to identify bundled webpack modules within scripts.

Round 1 (n = 288) Round 2 (n = 432) Round 3 (n = 614) Spot Check (n=300)

Code CodeManual Initial Refined Manual Initial Refined Manual Code Manual Code

Annotation 1: Webpack Bundle
Webpack Bundles 104 153 111 156 162 163 207 217 99 102
Precision 0.68 0.94 0.94 0.96 0.95 0.97
Recall 1 1 1 1 1 1

Annotation 2: Component Modules
Modules 6,857 7,847 6,857 9,816 9,156 9,090 12,889 12,913 5,701 5,690
Precision 0.87 0.99 0.99 0.99 0.998 0.998
Recall 1 1 0.93 1 1 0.996

Algorithm 1 Processing modules.
Input: AST← module AST
Output: hashedAST← processed representation of the AST
procedure hashModule(𝑛𝑜𝑑𝑒)

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐻𝑎𝑠ℎ ← 0
for each 𝑐ℎ𝑖𝑙𝑑 in 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐻𝑎𝑠ℎ ← 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐻𝑎𝑠ℎ + hashModule(𝑐ℎ𝑖𝑙𝑑)
end for
return ℎ𝑎𝑠ℎ(𝑛𝑜𝑑𝑒.𝑡𝑦𝑝𝑒 + 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐻𝑎𝑠ℎ)

end procedure

(7) We used the refined version of our code to annotate the same
sample and noted any improvements. This refined code ver-
sion is the initial version of the subsequent phase against new
samples.

(8) For each subsequent round, we repeated Steps 1-7, append-
ing the existing sample with 50 manually annotated webpack
resources (Step 4). We stopped refining our logic when we
observed negligible improvement in the precision, recall, and
accuracy of code-generated annotations between consecutive
phases.
We repeated the process for three rounds. Table 1 presents the

numbers and metrics for both annotations and the associated met-
rics for each round of refinement. At the end of the third round,
our code identified a given script as a webpack bundle with 95%
precision and gathered modules with 99.8% precision.

We used the resulting logic to annotate all scripts gathered in our
1K crawl. We annotated a total of 11,995 scripts as webpack bundles.
Finally, we performed a spot check of the generated annotation. We
randomly sampled and manually annotated 300 previously unsam-
pled scripts, of which we identified 99 scripts as webpack bundles.
Upon comparing and verifying the code-assigned annotation, we
observed a 97% precision rate in identifying webpack bundles and
a 99.8% precision rate in gathering component modules.

3.2 Processing Modules
Each module gathered from the previous phase comprises a sub-
tree, i.e., a partial AST of the larger AST representation of the script.
The module’s AST contains information about the structure of the

underlying code and the associated names of variables, functions,
and properties included within the script. Script attributes like vari-
able names are extremely volatile and have limited use in reliably
identifying target modules. URR, therefore, only considers (1) the
structure of the AST, i.e., the parent-child relationships between the
nodes that comprise the AST, and (2) the type of each AST node,
i.e., attributes which comply with the ESTree Spec, and are hence
limited to a deterministic set of values.

To distill and represent only these specific attributes from a
module’s AST, we adopt a version of a cryptographic concept used
in integrity verification: Merkle trees [19]. This approach presents a
novel part of our methodology. For example, consider a list of data
blocks that need to be verified (e.g., transactions in a blockchain).
We represent this list of blocks in a tree structure. Consider a tree
where each leaf node represents a piece of data, and each non-
leaf node is a cryptographic hash of its child nodes. These hashes
propagate upwards, converging into a singular root hash known as
the Merkle root. Any alteration in the foundational data triggers
a modification in the root hash, instantly signaling tampering or
modifications. However, if the root hash is verified, all of its children
are also verified.

URR adopts a similar methodology, briefly presented in Algo-
rithm 1. Given a module’s AST, it performs the following processing
steps.
(1) URR begins traversing the module AST from the root node.
(2) For every child node, it recursively calls the function to gather

the child node’s hash. The hash of each child, in turn, results
from the hashes of its children.

(3) It sums the hashes of all child nodes of the root node.
(4) To generate a hashed representation of the root node, URR

concatenates the type of the node to the sum of hashes of its
children and hashes the resulting string.

(5) It returns the processed representation of the AST.
This processed representation now comprises an alternative

tree representation with equal depth to its original counterpart.
However, tree-based comparisons are complex and add a large per-
formance overhead. Recall that while processing an AST, top-level
nodes contain information about underlying children. Therefore,
comparing a limiting comparison to a few high-level nodes of the

Unbundle-Rewrite-Rebundle CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Algorithm 2 Comparing modules against target libraries.
Input:
TOP_LEVEL_NODES← list of top-level nodes of module
DATABASE← hashes of known libraries
CANDIDATE_LIBRARIES← empty set
Output:
MATCH← weight of the associated match
for each 𝑛𝑜𝑑𝑒𝐻𝑎𝑠ℎ in 𝑇𝑂𝑃_𝐿𝐸𝑉𝐸𝐿_𝑁𝑂𝐷𝐸𝑆 do

librariesWithThisNode = DATABASE[𝑛𝑜𝑑𝑒𝐻𝑎𝑠ℎ]
for each [library, weight] in librariesWithThisNode do

CANDIDATE_LIBRARIES[library] += weight
end for

end for
bestMatch = max(CANDIDATE_LIBRARIES)
if bestMatch = targetLibary then return CANDIDATE_LI-
BRARIES[targetLibrary]
end if

processed module can provide insight into the similarity of the mod-
ule’s AST. To this end, URR gathers a list of top-level nodes. In other
words, noting that webpack wraps each module within a function,
we consider the computed hashes of each statement within the func-
tion. Say, for example, when bundled within webpack, the module
comprises three statements: one variable declaration statement, one
function definition (which further contains multiple nested state-
ments), and one export statement. URR will process this module
and gather hashes for three top-level nodes – owing to the Merkle
tree-based approach, each of the hashes will be computed from the
top-level statements’ children.

Additionally, URR associates each entry in this list with a weight
that represents the number of child nodes it represents, i.e., it weighs
a node representing a complex function higher than a node repre-
senting a simple variable declaration. Consider the same example as
above. Here, the initial declaration statement and the export state-
ment will represent fewer nodes than the function definition (which
has children within nested statements). As a result, the function
declaration statement will have a higher weight, corresponding to
the ratio of nodes it represents to the total nodes in the module’s
overall AST.

3.3 Comparing Modules
URR uses the list of top-level nodes to compare against a database
of top-level nodes of processed module representations correspond-
ing to targeted libraries. While this database is generated offline,
processed modules for these libraries are also gathered in a similar
manner to the logic presented in Algorithm 1. We provide details
regarding the creation of this database in Section 4. Here, we focus
our discussion on the comparison and identification of processed
modules.

Algorithm 2 presents an overview of the comparison strategy.
We present a brief description below.
(1) URR traverses the list of hashes of the top-level nodes repre-

senting the module observed in the wild.

(2) It looks up the hash of each node in the database and identifies
every library with the same top-level node. It considers any
such library as a candidate library.

(3) It appends the node’s weight for each candidate library to pre-
vious matches, if any. Therefore, the weights associated with a
candidate library increase each time it includes a match.

(4) Once all top-level nodes have been traversed, URR identifies
the candidate library with the highest associated weight.

(5) If the highest match corresponds to the target library, URR
returns the weight of this match, thereby marking the module
as a candidate for replacement.

3.4 Replacing Modules
URR replaces each marked privacy-harming module with a corre-
sponding, benign replacement. It can perform this action in one of
two ways: (1) URR can replace the module’s AST with an alterna-
tive, benign AST and then regenerate the script from the modified
AST; (2) Alternatively, URR can identify the string indices for the
module within the textual representation of the script, and place
the benign replacement between these indices. Regardless of its
approach, URR ensures that access and use of the replacement does
not break other parts of website functionality.

Replacements for targeted modules are manually created. Given
the nuances of each target library and its eventual mutated repre-
sentation in webpack bundles, we describe the three categories of
replacements to consider within each module.

➤ Global Variables. If libraries expose global variables on the win-
dow object, these variables must be made available. Additionally,
the types of such variables need to be retained.

➤ Exports. The replacement must ensure that values previously
exported from the target module remain available. When other
modules consume the module, it must be made accessible, even
if replaced with a benign version.

➤ Webpack-based Function Wrappers.When webpack wraps
modules in functions, it passes specific parameters included in the
function signature. Additionally, values exported by modules are
appended as properties to webpack objects. Replacements need
to ensure that these parameters and exports work seamlessly.
Finally, each replacement needs to ensure the consistency of

variable types, i.e., functions be replaced with functions, constants
be replaced with constants, and so on. We further provide examples
of specific replacements in Section 4.

4 EVALUATION
In this section, we evaluate the effectiveness of URR in identify-
ing specific libraries in bundled scripts captured in the wild. We
select three libraries to target and describe the process of gath-
ering their module representations for comparison. We then use
URR to identify target libraries in scripts gathered from a crawl of
popular websites. Next, we develop a deployment of URR as a Fire-
fox extension and evaluate the performance overhead introduced
by its interventions. We conclude by describing the creation and
evaluation of benign replacements.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

4.1 Evaluation Dataset
We first describe the selection of example libraries that we use to
identify in the wild. We describe the offline process of gathering
representations for these libraries, which URR can then use to
identify libraries in the wild.

4.1.1 Target Library Selection. We select three libraries for our
evaluation —FingerprintJS12, Sentry13, and Prebid14. Each of these
libraries is included in filter lists15 used by popular content blocking
tools1617. Additionally, all three libraries provide the option for
developers to use their npm packages with bundled code.

FingerprintJS18 is a popular browser fingerprinting library that
tracks and identifies users. When embedded within a website that a
user visits, the library performs various client-side operations that
query browser attributes and stores a unique identifier for the user.
Besides its use in user authentication [17] and ad fraud prevention19,
the library de-anonymizes sensitive user activity across sites. Since
the domains that the library uses are blocked by popular content-
blocking tools, FingerprintJS recommends that developers use their
npm package or self-host a copy of their scripts20.

Sentry21 is an analytics tool that offers libraries for performance
and error monitoring. The library helps developers gather details
about user interaction, DOM events, console logs, and network calls.
The library lets developers decide how they use the information
gathered from users and offers multiple integrations, including
multiple third-party analytics services22. Since the CDNs that host
Sentry code are blocked by popular content blockers, the library
recommends that developers get around this restriction by bundling
Sentry’s npm package into their app23.

Prebid24 is a popular advertising library that developers can use
to add header bidding to their applications. The library integrates
with numerous advertising, analytics, and user-tracking libraries,
providing support for bidding on targeted advertisements. Similar
to previously discussed libraries, Prebid is included within filter
lists and content-blocking tools. The library is open source and
is available to be added to bundles with an npm package. Prebid
provides specific instructions on integration with webpack25. The
library must be compiled with Babel26, and specific plugins must be
used when loaded with webpack. It provides specific instructions
for webpack configurations, which gives us insight into its use
when integrated by bundles in the wild.

4.1.2 Bundler Configurations. Web applications are developed in
a large variety of environments, frameworks, and configurations
12https://github.com/fingerprintjs/fingerprintjs
13https://github.com/getsentry/sentry-javascript
14https://github.com/prebid/Prebid.js
15https://easylist.to/
16https://github.com/gorhill/uBlock
17https://adblockplus.org/
18https://fingerprint.com/
19https://fingerprint.com/case-studies/
20https://github.com/fingerprintjs/fingerprintjs/blob/master/docs/evade_ad_
blockers.md
21https://sentry.io/
22https://develop.sentry.dev/development/analytics/
23https://docs.sentry.io/platforms/javascript/troubleshooting/#dealing-with-ad-
blockers
24https://prebid.org/
25https://github.com/prebid/Prebid.js
26https://babeljs.io/

Table 2: An overview of the build options used to gather
representations for the target library.

Build Options Possible Values

Module Systems:
↩→ Dependency Statement [import, require]
Webpack Optimizations:
↩→ usedExports [true, false]
↩→ concatenatedModules [true, false]
Minifier Options:
↩→ passes [0, 1, 2]
↩→ arrows [true, false]
↩→ dropConsole [true, false]
↩→ unsafeCompress [true, false]
↩→ unsafeMethods [true, false]
↩→ unsafeUndefined [true, false]
↩→ unsafeArrow [true, false]
↩→ unsafeCompare [true, false]
↩→ typeofs [true, false]
Browser Support:
↩→ ie8 [true, false]
↩→ safari10 [true, false]

before they are compiled and shipped to production. As a result,
when the same npm package is bundled within different applications,
its modules will generate a wide range of AST structures. These
variations make it difficult to gather a definitive AST representation
for the package that will return perfect matches when compared
against scripts found in the wild. However, the AST of the module
corresponding to each library is complex and, hence, unique. Our
intuition is that the AST of a given library will be closer to differ-
ently configured ASTs of the same library than to ASTs of other
libraries.

To gather multiple options for module representations and help
us get the closest match to a target library in the wild, we gather
a list of popular build options to be considered for each library.
Table 2 These options cover four aspects that we describe below.
(1) Module Systems.Depending on the target npm package and the

development environment of the web application, the library
may be consumed as a CommonJS module or an ECMAScript
module. We gather configurations for both module types.

(2) Webpack Optimizations. When bundling code from multiple
files, webpack keeps track of imported and exported values
with the help of a dependency graph. Depending on the module
system, the output environment, and the developer’s configura-
tions, it provides options to automatically identify and discard
unused parts of code and to reduce the size of the final output.
The use of these options can change how the module appears
in the output bundle.

(3) Minifier Options. Once webpack creates a bundle output, it
uses Terser27 to minify the code. Developers can provide ad-
ditional options to ensure that the output works with their
intended production environment and that their applications

27https://terser.org/

https://github.com/fingerprintjs/fingerprintjs
https://github.com/getsentry/sentry-javascript
https://github.com/prebid/Prebid.js
https://easylist.to/
https://adblockplus.org/
https://fingerprint.com/
https://fingerprint.com/case-studies/
https://github.com/fingerprintjs/fingerprintjs/blob/master/docs/evade_ad_blockers.md
https://github.com/fingerprintjs/fingerprintjs/blob/master/docs/evade_ad_blockers.md
https://sentry.io/
https://develop.sentry.dev/development/analytics/
https://docs.sentry.io/platforms/javascript/troubleshooting/#dealing-with-ad-blockers
https://docs.sentry.io/platforms/javascript/troubleshooting/#dealing-with-ad-blockers
https://prebid.org/
https://github.com/prebid/Prebid.js
https://babeljs.io/
https://terser.org/

Unbundle-Rewrite-Rebundle CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

work in all supported environments. We consider a list of com-
pression options that alter the syntax of the module in the
bundled output.

(4) Browser Support. Developers can additionally specify support
for legacy browsers. These options override other minification
and compression to ensure that the output bundle is also com-
patible with legacy browsers.
We gathered all combinations of the build options and created

a total of 24,576 build configurations that we then used to bundle
each target library.

4.1.3 Creation of TargetModule RepresentationDatabase. Wegather
various hashes for these libraries with the help of a large set of
versions and different webpack configuration options, resulting in
multiple AST representations for each target library. We briefly
describe the steps below.
(1) Library Versions.We gather a list of past versions released by

the library on the npm registry. We download and install each
version in a separate barebones application.

(2) Barebones Application. For each version, we create a bare-
bones Node.js application with a single JavaScript file. The file
consumes the target library with either an import or a require
statement.

(3) Build Options. For each library version, we build multiple
webpack bundles, one for each combination of build options.

(4) TargetModule.When building a bundle, webpack provides the
option to gather relevant info about individual modules28. We
use this information to identify the file, name, and position of
the module corresponding to the target library. Thereafter, we
gather an AST representation of the output bundle and extract
the sub-tree corresponding to the target module.

(5) Processing AST. We process the extracted AST in a similar
manner to the steps described in Section 3.2. We then gather a
list of hashes for the top-level nodes from each bundle along
with their corresponding weights.

4.1.4 Additional Library Configurations. In addition to the three
target libraries, we gathered a list of 10k popular npm packages
based on their download counts29. From this list, we collected a
random sample of 10 versions of each of the 1k libraries. For each
sampled library version, we generated 100 webpack bundles each
with a different, random build option. We extracted and processed
their modules and gathered a weighted list of hashes corresponding
to the top-level nodes of their ASTs.

4.2 Framework Effectiveness
In this section, we describe our evaluation of URR’s effectiveness
in identifying target libraries within scripts captured in the wild.

4.2.1 JavaScript Resource Dataset. We used a puppeteer-based
crawler that visited sites from the Tranco list [15] and gathered
JavaScript resources through network interception. We previously
used this dataset to create a bundle parser, described in Section 3.1.
The dataset comprises 30,930 scripts from 1,063 sites, of which
11,995 scripts are bundled resources.

28https://webpack.js.org/api/stats/
29https://github.com/anvaka/npmrank

Figure 3: An overview of the target libraries identified from
a crawl of the Tranco 10K. In addition to the 697 instances of
true positive (✕)matches above the 8% threshold, we observed
>15K instances of true negative () matches ofmodules below
the threshold.

4.2.2 Gathering Matches. For each bundle in the dataset, URR
extracted and processed component modules (see Algorithm 1). It
then gathered a weighted list of top-level nodes from the processed
module. URR then compared each module against all libraries in
the evaluation dataset (see Section 4.1). For each module, we noted
the library in the evaluation dataset with the closest match. Finally,
we gathered a list of modules for which the closest match was one
of the three target libraries. We gathered a total of 73 matches for
FingerprintJS, 324 matches for Sentry, and 3,532 matches for Prebid.

4.2.3 Manual Verification. For each match, we manually verified
the code embedded between the corresponding indices in the script.
We observed the code structure, the use of specific properties, and
the number and types of exported variables, functions, and objects.
We then manually annotated each match as a true positive or a
false positive.

4.2.4 True Positive Threshold. We observed the tradeoff between
precision and recall for the matches returned for all three target
libraries. We looked for the lowest threshold match percentage for
an AST for which all three libraries observed 100% precision, i.e.,
any AST that returned a positive match above this threshold was
correctly annotated. We, therefore, arrived at a common match
threshold value of 8%. Despite observing a small drop in recall for
Sentry, we prioritized precision to ensure that URR never blocks
benign modules even if it misses some privacy-harming scripts.

4.2.5 Evaluation on a larger crawl. Next, we performed a larger
crawl of the web, gathering scripts from the top 10K sites in the
Tranco list. We used URR to evaluate these scripts and employed the
>=8% match threshold discussed earlier. We detected FingerprintJS
on 205 sites, Sentry on 213 sites, and Prebid on 325 sites. Overall,
URR identified at least one of the three target libraries on 7% (𝑛 =

697) of the top 10K sites. Figure 3 presents an overview of our
observations. We note that the larger crawl has fewer matches than
the Top-1K sites, which can possibly be explained by existing work,

https://webpack.js.org/api/stats/
https://github.com/anvaka/npmrank

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

Table 3: Time taken (ms) by the extension to process scripts
using network interception.

Phase # Scripts Time (ms)
𝜇 𝜎 Median

Buffering script text 6,702 690.69 1,189.26 240

Gathering modules 6,699 46.17 98.25 9
Processing modules 2,135 326.31 635.58 114
Comparing modules 2,135 1.15 2.28 0

which states that (a) less popular websites are less complex [26],
and (b) popular sites are more likely to engage in privacy-harming
behaviors [23].

4.3 Performance
In this section, we provide a sample deployment of URR as a Firefox
extension. We use this non-optimized deployment to evaluate an
upper bound on the latency introduced by different phases of the
pipeline and their effect on page load times.

4.3.1 Firefox Extension. Considering URR’s ability to recognize
bundles given the entire contents of scripts, we determined that
an approach that intercepts network requests and responses will
be a useful initial deployment. Considering Chrome’s restrictions
on content filtering from extensions30, we developed a Firefox
extension that intercepts and modifies the content of responses
across all domains that the browser visits31.

4.3.2 Crawl. We evaluated the performance of a browser instance
with and without the extension by visiting sites in the Tranco
list [15]. For each web page, we performed the following steps.
(1) First, we created and initialized a new browsing profile.
(2) Next, we used Mozilla’s web-ext32 to load a Firefox instance

with the web extension.
(3) We used Puppeteer33 to connect to the browser instance, visit

the web page in a new tab and wait for 30 seconds.
(4) The extension’s background script intercepts and evaluates all

script-based network requests. It captures and stores the time
taken by each step in the script evaluation pipeline.

(5) The extension’s content script captures metrics relevant to web
page performance.

(6) We closed the browser instance and deleted the user profile
directory and Firefox’s caches from the filesystem to ensure a
fresh browsing state for subsequent visits.

(7) We repeated steps 1-6 in a browsing profile without our ex-
tension installed and recorded relevant web page performance
metrics for comparison.

4.3.3 Pipeline Performance. First, we discuss the evaluation of
individual scripts. Table 3 shows the time taken by different phases

30https://developer.chrome.com/blog/improvements-to-content-filtering-in-
manifest-v3/
31https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-
steps/
32https://extensionworkshop.com/documentation/develop/getting-started-with-
web-ext/
33https://pptr.dev/

Table 4: Time taken (ms) to load a page with and without the
extension installed, from a crawl of 𝑛 = 963 web pages.

Metric w/o Extension w/ Extension
𝜇 𝜎 Median 𝜇 𝜎 Median

First Contentful Paint 2,735.55 1,690.62 2,550 3,029.51 2,236.36 2,423
DOM Interactive 2,796.39 1,687.63 2,620 3,367.55 2,204.51 3,052
Page Load 4,790.39 3,156.72 4,130 7,107.45 4,759.42 6,078

Table 5: Memory space taken by the extension’s hash signa-
tures to detect target libraries, comprising signatures of tar-
get libraries along with those of additional libraries (§4.1.4).

Signatures #ASTs #HashMap SizeTarget Addtional Entries

All Hashes All Hashes 258,788 265,962 3.55 GB
All Hashes 0.5 * (All Hashes) 176,963 142,173 2.77 GB
All Hashes — 95,174 19,555 2.27 GB
Top-10K Matches — 242 2,514 0.003 GB

of the pipeline. We observed the gathering modules and compared
processed modules, which have the least impact, taking, on average,
46.17ms and 1.15ms, respectively. URR takes the longest time to
process modules, i.e., recursively compute hashes for all nodes in
an AST, which takes 326.31ms on average for each script.

However, we observed that the largest chunk of the time was
consumed outside of URR’s evaluation and instead spent in buffer-
ing incoming response chunks to load the entire script. This is a
limitation of the mode of deployment, i.e., Firefox extensions that
modify the body of network responses bypass the browser’s opti-
mized cache for scripts34. The deployment waits for large network
responses to complete before evaluating the script. In Section 5, we
discuss alternative deployments that evaluate code at runtime and
can bypass dependence on network load times.

4.3.4 Page Performance. Next, we discuss the effect of the sample
deployment on page load. Recall that we used a content script to
gather metrics from the page context for each visit with and without
the extension. Table 4 presents a snapshot of our observations. We
describe three collected measures below.

First Contentful Paint (FCP) is a timing measure that shows when
the browser renders the first bit of content. The content could be any
text, image, video, canvas, or non-empty SVG. The timing shows
the first instance in which the user has an indication that the page
is loading. We observed that the extension added 293.36ms to the
average time a user would wait for such an indication.

DOM Interactive indicates the time taken for the Document Ob-
ject Model (DOM) parser to finish its work on the main document,
i.e., the time taken to construct the DOM. This time can be affected
by the parser-blocking JavaScript. Note that the extension’s script
evaluation runs outside the main thread. We observed that the ex-
tension added 571.66ms on average, i.e., a user would have to wait
an additional 0.5s before the browser has parsed the DOM.

Page Load indicates the total time taken for all resources to
load. It indicates that network requests for all scripts, images, and
34https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/
webRequest/filterResponseData

https://developer.chrome.com/blog/improvements-to-content-filtering-in-manifest-v3/
https://developer.chrome.com/blog/improvements-to-content-filtering-in-manifest-v3/
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
https://extensionworkshop.com/documentation/develop/getting-started-with-web-ext/
https://extensionworkshop.com/documentation/develop/getting-started-with-web-ext/
https://pptr.dev/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData

Unbundle-Rewrite-Rebundle CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

other resources have been completed. This metric does not indicate
actual end-user experience since it depends on device capabilities
and various network conditions, but in our case, provides insight
into the additional time added by the extension buffering responses
and evaluating script contents. We observed that pages loaded
with the extension took an additional 2,317.06ms on average before
triggering the load event.

4.3.5 Signature Database Size. URR’s extension deployment uses
a complete database of hash signatures, which includes those com-
puted for target library configurations (based on Table 2) along
with additional configurations of popular NPM libraries (see §4.1.4).
To optimize the time taken to compare modules (§3.3), URR stores
the signatures as a hashmap, with the key for each entry holding
the hash of a top-level node and the value holding a dictionary
comprising root node hashes along with corresponding weights
(see Algorithm 2). We evaluated different database compositions to
reduce its overall size, especially considering subsets of additional
configs from popular libraries. Table 5 shows that even with the
database solely comprising signatures of target libraries, it con-
sumes 2.27GB of memory space (see Row 3 of Table 5). We observed
that reducing the number of hashes included in the database re-
duced the extension’s use of memory space (from 3.55 GB to 2.27
GB), which can be beneficial to devices with limited resources.

We considered further reducing the database to only include
target library signatures we found in our 10K crawl (see §4.2.5).
While this subset greatly reduced the size of the database (3.54 MB),
we noted that the majority of the ASTs (57%; 𝑛 = 139) correspond
to a single match. We comprised an extensive list of hash repre-
sentations (based on Table 2) to make URR especially effective in
detecting target libraries despite the websites adopting of a wide
array of potential configurations. Using a match-based subset (as
used in Row 4 of Table 5) will limit URR’s detection of libraries
on websites that deploy target libraries within differently config-
ured webpack bundles. We note that while greatly reducing target
library hash representations may not be effective, developers can
consider caching frequently encountered bundles. We further dis-
cuss caching in §5.

Finally, we repeated crawls of sites from the Tranco list (see
§4.3.2), but this time, visited sites with each of the four database sizes
deployed within URR.We observed that the different configurations
had a negligible effect on page load, with the databases’ use in the
Comparing Modules phase taking an average time of 1ms (𝑀 = 0ms).
Table 5 therefore focuses on the different configurations’ impact
on memory usage.

4.4 Replacements
Prior work has extensively studied and determined the creation
and use of non-breaking, benign replacements for privacy-harming
code [28]. We follow similar principles and extend example replace-
ments used by uBlock Origin35.

4.4.1 Creating Benign Versions of Target Libraries. For each of the
three libraries, we considered associated source code and documen-
tation to create equivalent benign versions.

35https://github.com/gorhill/uBlock/tree/9123563895f0499849b4d85c4f95e1ed6ace2231/
src/web_accessible_resources

FingerprintJS (v3 and v4), when loaded as a library from its npm
package, provides a function, load(), which returns a Promise that
resolves to an object that can be used to get() a unique visitorId
for the user. While the computation includes privacy-harming code,
the benign replacement that we developed only returns a randomly
generated visitorId. We used a similar approach to the existing
replacement included within uBlock origin36, but modified the
same to a Node.js module. FingerprintJS v2 has developers get() a
unique visitorId without first needing to load() the library. Our
benign replacement exports values for all versions of FingerprintJS
without needing to individually support 52 minor versions released
across 3 major versions (v2, v3, and v4). Considering the small
number of export replacements, manually creating a replacement
for FingerprintJS only takes around 20 minutes.

Sentry provides a browser library (@sentry/browser). Below,
we detail the development of replacements for the library.
(1) Enumerating Replacements. Sentry’s browser library further

imports related packages, which include utilities for tracing and
profiling user action events and functionality to handle network
requests, along with 24 functions (with void return values)
from its core analytics library (@sentry/core). We used the
official documentation as a guideline. Enumerating all imports,
functions, and objects that needed replacements took us around
90 minutes of wall clock time.

(2) Functions. We used a benign function that performed no opera-
tions (noop) as a stand-in for functions with no return values.
We used the functions for the 24 functions imported from the
core library, 3 functions imported to handle network requests,
and one function each to support its additional “hub” extension
and to initialize the library. The library additionally exposes a
function, close() (used to flush pending events), that returns a
Promise that resolves with a timeout. We retained this function
as in the original library. Once listed, since all functions required
straightforward replacements, this took around 20 minutes.

(3) Class Definition. Sentry defines a BrowserClient class with a
constructor that accepts any argument it is passed. Developing
a replacement for this class only takes a couple of minutes.

(4) Global Variable. Finally, Sentry exposes all its functionality by
defining an object instance of its BrowserClient class and ex-
poses all aforementioned functions as members of this class.
The library makes the object available as a global variable (on
the window object). Also, it exports the same functionality to
the user’s code that imports it as an npm package. Defining the
global variable and the exports takes under 5 minutes.
Updates between Sentry versions (v5-v8) reuse exports of the

same name, ensuring that, unlike for FingerprintJS, our benign
replacements did not need to accommodate additional changes. As
a result, the benign replacement that we developed in around 2
hours by wall clock time replaces 335 minor versions of Sentry’s
npm package.

Prebid provides a similar npm package to Sentry, i.e., its main
functionality is included from an entry point module, while it im-
ports additional functionality from related libraries. Our replace-
ment focuses on the entry point module, i.e., pbjs, which, in turn,

36https://github.com/gorhill/uBlock/blob/9123563895f0499849b4d85c4f95e1ed6ace2231/
src/web_accessible_resources/fingerprint3.js

https://github.com/gorhill/uBlock/tree/9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_accessible_resources
https://github.com/gorhill/uBlock/tree/9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_accessible_resources
https://github.com/gorhill/uBlock/blob/9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_accessible_resources/fingerprint3.js
https://github.com/gorhill/uBlock/blob/9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_accessible_resources/fingerprint3.js

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

accesses other related functionality. The developer would need to
refer to prebid’s publisher-facing APIs37 which exposes 45 exports
that we individually replace.We developed 41 function replacements
similar to those created for functions within Sentry (described ear-
lier). Of these, 18 functions (∧get∗()) returned an object, which
we replaced with an empty object response. The remaining 23 func-
tions did not have a return value, which we replaced with an empty,
noop function. We replaced the remaining 4 exports with empty
arrays that developers can define and edit.

While Prebid’s library itself has undergone numerous changes
across versions (e.g.,support for adapters, consent management, and
user ID modules), its publisher-facing API has retained the same
exports.We verified this against the library’s release notes38 and the
library’s source code. As a result, developing benign replacements
for 41 functions and 4 arrays took only about an hour by wall clock
time. Crucially, our replacement works against 186 minor library
versions across 4 major Prebid version releases (v5-v9).

4.4.2 Limiting Breakage. We designed our replacements in a man-
ner that would cause little breakage. Our replacements are expertly
developed to maintain compatibility (uBO uses a similar approach
for non-bundle replacements, e.g.FPJS39). For each replacement
module, we created a barebones application that accesses the li-
brary functionality. The barebones application helps evaluate each
replacement, ensuring that the application remains functional. We
package the resulting application and gather the webpack module
corresponding to the benign replacement for use in the system’s
deployment. We evaluated our replacements by (i) ensuring that
the JS execution of mock apps that bundle the library and the re-
placement were both successfully executed, (ii) our deployment re-
turned metrics showing successful page load and DOM interaction
events (Smith et al. [27] found network behavior highly predictive
of breakage. Nisenoff et al. [22] found users consider page load
and responsiveness the most prominent breakage category.) We
ensured our replacements have the shape (scope and exports) we
want and are effective (execution of mock apps, page load, DOM
responsiveness in the real world) against extensive testing. We can
add a manual breakage evaluation by sampling modified websites.

4.4.3 Manual Breakage Analysis. Core to understanding whether a
website is functional or broken is the user’s subjective perspective of
the features that are needed within the context of the website. With
this in mind, we adopted the methodology presented by Snyder
et al. [29] to study the effect of URR’s replacements on website
functionality. We sampled 30 websites (10 sites per target library)
that bundled target libraries and on which are extension deployed
benign replacements (determined from the crawl in §4.2.5). We
instructed three undergraduate workers to visit each website twice
in a row. In the first visit, they were instructed to use the website in
an unmodified Firefox browser. Considering that the average dwell
time for a user on a website is under a minute (Chao et al. [18]), the
workers were instructed to perform as many actions on the page as
possible in one minute. On the second visit, they were instructed
to visit and use the same website within a Firefox browser with

37https://docs.prebid.org/dev-docs/publisher-api-reference.html
38https://docs.prebid.org/dev-docs/pb9-notes.html
39https://github.com/gorhill/uBlock/blob/9123563895f0499849b4d85c4f95e1ed6ace2231/
src/web_accessible_resources/fingerprint3.js

the extension enabled. We asked them to assign a score for each
website: 1 if there was no perceptible difference between the two
visits, 2 if the browsing experience was altered during the second
visit, but they were still able to complete the same tasks as during
the first visit, and 3 if they were unable to complete the same tasks
as during the first visit.

We considered a website to be broken if the workers could
not complete their intended task (i.e., the website was assigned
a score of 3). We had the workers browse the same sites and record
their scores independently and also had them include notes to pro-
vide context for their scores. We observed a high agreement ratio
(96.67%) between the workers’ scores, who reported that 29 of the 30
websites were functional with benign replacements. For the single
site that the workers reported broken (https://mlb.com), we visited
the site with a modified version of our extension that does not
perform replacement. We observed that the site was broken even
without the replacements, primarily owing to longer wait times
in loading large scripts as fragments and the extensions’ blocking
network requests (see §4.3.3). Our observations were also in line
with the workers’ notes, which indicated that they considered the
page broken because it takes “too long to load”. We, therefore, con-
cluded that the site was broken due to the extension’s network
interception and not the benign replacements.

We note that we did not collect or process private data or iden-
tifiable information from our evaluators, and the testing does not
qualify as human subject research. Therefore, we did not seek an
IRB review. This is consistent with prior work that used roughly
the same evaluation setup [12, 13, 29].

4.4.4 Automated Breakage Analysis. We also performed an auto-
mated analysis by crawling websites from the Tranco Top-1K. We
visited each site within a Firefox browser with and without deploy-
ing URR. We used a puppeteer script to capture all console errors
and page errors that were observed during each visit. Visits with
URR deployed observed an average of 5 errors (𝜎 = 15;𝑀 = 1),
while visits without URR observed a slightly higher but similar
average of 5.66 errors (𝜎 = 14;𝑀 = 1). We noted that visits to 84%
sites (𝑛 =714/846) with URR observed the same number of errors or
fewer. Interestingly, we found more sites that produced fewer errors
with deploying URR (𝑛 =152;18%) than sites that produced fewer
errors without URR (𝑛 =132;15%). We further analyzed instances
where deploying URR produced more errors and made two notable
observations. First, a majority of these errors refer to (a) rejections
in setting cookies, (b) CSP violations, and (c) Timeout errors (po-
tentially resulting from waiting for network responses). Second,
63% (𝑛 =84/132) of these instances involve a difference <=2 errors
between the two visits. We note that our analysis is limited and is
only one of many insights into page breakage. With that caveat,
considering that a large majority of websites respond similarly with
and without deploying URR (overall average, #sites with <= errors,
#sites with >= 2 errors), our observations show that URR retains
web functionality and compatibility when deployed in the wild.

5 DISCUSSION
Applicability to Other Systems. In this work, we target and

evaluate against JavaScript bundles generated by Webpack. We
selected Webpack because it is the most popular bundling system

https://docs.prebid.org/dev-docs/publisher-api-reference.html
https://docs.prebid.org/dev-docs/pb9-notes.html
https://github.com/gorhill/uBlock/blob/9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_accessible_resources/fingerprint3.js
https://github.com/gorhill/uBlock/blob/9123563895f0499849b4d85c4f95e1ed6ace2231/src/web_accessible_resources/fingerprint3.js
https://mlb.com

Unbundle-Rewrite-Rebundle CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

on the Web. However, many other bundling approaches are used on
the Web, some variations on the same approaches used in Webpack,
some fundamentally different, and even working on different levels
of the deployment process. We here briefly discuss these other
bundling formats and how URR could be extended to apply to them
(and with what difficulties).

Webpack is generally used to combinemultiple different JavaScript
libraries and code units and to process them into a single JavaScript
file to make deployment easier and (in some cases) execution faster.
While Webpack is the most common tool for this purpose, many
others are used with different languages, build chains, testing frame-
works, and, in some cases, bundling additional resource types be-
yond JavaScript files. Examples of these alternative bundlers include
Browserify 40 and Gulp 41, among many others.

URR could easily be extended to cover these other bundling tools,
as at root they all operate in the samemanner (i.e., consumemultiple
JavaScript files, preprocess them, and then generate code for the
resulting combined AST). To do so would only require generating
new signatures for ASTs of each target privacy-harming library
generated by the bundler’s preprocessing and rewriting phases and
understanding the structure of each bundler combines the ASTs
generated by each input library into the final, resulting code unit.
This is work that would only need to be done once per bundler
version and then could be shared across all URR clients.

Another approach to JavaScript bundling is directly combining
each JavaScript code unit into a single archive and shipping the
entire archive to the client alongside the website’s initial HTML.
This approach, exemplified by Google’s WebBundles 42 proposal,
does not preprocess or otherwise modify the include JavaScript
code units; included files are directly copied into the bundle archive.
Cloudflare’s Cloudflare’s Managed Components 43 product can also
be seen as a form of this kind of bundling, though instead of all com-
bined into a single archive, they’re instead delivered “on demand”,
as managed by an overriding “manager” application, making any
URLs unpredictable. Extending URR to cover these kinds of bundled
applications would be trivial since bundled JavaScript files are not
modified in the bundling process. Identifying them within the bun-
dled application is straightforward. Similarly, rewriting unwanted
code is trivial since it only requires swapping the original file with
the privacy-preserving alternative (either in the original archive or
returned as a new subresource by the “manager” application).

Alternative Deployment Strategies. In this work, we imple-
ment URR as a Firefox extension. We choose a Firefox extension
because only Firefox’s extension API includes the ability for an
extension to buffer and rewrite a fetched subresource 44 (like a
JavaScript file), before the file is seen, parsed, and executed by the
JavaScript engine.

However, the same approach we take in the extension could be
identically deployed from other decision points, either to be more
general across browsers (e.g., as part of a man-in-the-middle proxy)

40https://browserify.org/
41https://gulpjs.com/
42https://wpack-wg.github.io/bundled-responses/draft-ietf-wpack-bundled-
responses.html
43https://managedcomponents.dev/
44https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/
webRequest/filterResponseData

or more specific to particular browsers (e.g., as a modification to
the V8 parsing pipeline). The majority of the resources needed for
URR to work could apply equally across all of these intervention
points (e.g., fingerprints of the ASTs of unwanted to code, bundle
“unbundling” logic, privacy-preserving replacement AST subtrees).

However, each of these intervention points would come with
their own largely-predictable tradeoffs. Analyzing, unbundling, and
rewriting JavaScript bundles as part of a man-in-the-middle proxy
would work for any browser or network tool, though with a per-
formance impact (since JavaScript engine optimizations like partial
or lazy compilation would not be possible). Likewise, pushing URR
logic into the JavaScript engine directly would likely allow for
greater performance at the cost of development and maintenance
cost, and require browser-specific implementations. That said, we
reemphasize that most of the novel aspects of URRwould be generic
and shareable across all possible intervention points.

Diversity of Target Library Representation. URR requires a
significant amount of precomputation to work effectively. Specifi-
cally, URR requires precomputing a signature for every AST for each
library or code unit that should be rewritten at runtime. While this
is a significant improvement over the existing state of the art ([28],
for example, requires the precomputing each target bundled appli-
cation, which will both be orders of magnitude larger in occurrence,
but also enormously larger in terms of required disk space), it is
still not trivial. The same target library can give different signatures
depending on library version (e.g., FingerprintJS v2 vs v3), bundler
version (e.g., Webpack v4 vs Webpack v3), bundler optimization
strategies (e.g., “tree-shaking” or no), library integration method
(e.g.,CommonJS vs ECMAScript modules) among other dimensions.

As discussed in Section 3, URR uses several heuristics to ef-
fectively generalize signatures, to flatten the number of dimen-
sions of signatures needed per target library (e.g., label stripping,
AST simplification, etc.). Nevertheless, there is still a tradeoff be-
tween coverage—generating as many signatures as possible to
correctly identify the same target code across a wide range of
representations—and concision—minimizing the memory, match-
ing time, and disk space used on each URR client at runtime.

Replacements. While other phases of URR are programmati-
cally generated, we manually created benign replacements. Even
with manual curation, we show in Section 4.4.1 that while benign
replacements can take between 20 and 120 minutes to create, they
can be scaled to replace a large number of versions of a target
library (e.g.,Sentry’s replacement applies to >300 versions).

Regardless, this phase requires an expert understanding of both
the specific bundler and the target library itself. While prior work
has shown approaches that can automate this creation, we leave
the adaption of a similar approach in the context of bundles as an
avenue to explore in future work. Prior work like [28], which allows
for the automatic creation of privacy-and-compatibility preserving
versions of JavaScript libraries, could be leveraged to greatly expand
the number of target libraries URR can identify and rewrite in
bundled applications.

Caching Frequently Encountered Bundles. We designed URR
to work against an extensive array of configuration options applied
to bundles in the wild. Our deployment of URR makes an essential

https://browserify.org/
https://gulpjs.com/
https://wpack-wg.github.io/bundled-responses/draft-ietf-wpack-bundled-responses.html
https://wpack-wg.github.io/bundled-responses/draft-ietf-wpack-bundled-responses.html
https://managedcomponents.dev/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mir Masood Ali, Peter Snyder, Chris Kanich, and Hamed Haddadi

tradeoff: its large database of target library signatures consumes
notable memory space (2.27 GB - 3.55 GB). In Section 4.3.5, we
discussed that reducing the database size can affect URR’s detection
of target libraries. However, developers can alternatively cache
entire bundles that they frequently encounter. This way, while the
browser extension would still block network requests, scripts do
not need to be processed through URR on repeated encounters.
For example, the service shopee.com has multiple related sites
(shopee.com, shopee.co.id, shopee.co.th, shopee.tw), all of which
load the same bundle (containing FPJS as one of the modules) from
different URLs which would bypass filter lists. However, since the
script’s content is identical, a cache of this script can help perform
detection and replacement without needing to process the script
into component modules.

6 RELATEDWORK
Filter Lists. This research is closely tied to a broad domain of re-

search investigating the advantages, effectiveness, and responses to
filter list-based content blocking. Note that existing filter lists (e.g.,
EasyList, EasyPrivacy) are developed manually and community-
maintained. Merzdovnik et al. [20] performed a large-scale study
that highlighted the effectiveness of filter list-based browser exten-
sions and also indicated that these tools often lead to a decrease
in overall CPU usage, even when considering their own overhead.
Gervais et al. [11] quantified the privacy gain from ad-blockers and
discovered that these tools can reduce interactions with third-party
entities by up to 40% with default settings. However, other studies
have pointed out significant inefficiencies in filter lists. Snyder et
al. [30] highlighted the abundance of “dead-weight” rules that offer
no discernible benefits in popular lists. Similarly, Alrizah et al. [1]
found that popular lists contain a large number of false positives,
which can take two or three months to be discovered.

Automated Content Blocking Approaches. Numerous studies
have developed approaches to either help automatically generate
filter list rules or develop alternative methods to block privacy-
harming content. AdGraph [13] created a graph-based machine
learning approach that used features like URL length and origin to
differentiate between benign and privacy-harming resources. Bha-
gavatula et al. [4] also used URL-based features to train a machine-
learning model for resource filtering. Chen et al. [5] used filter lists
as ground truth and developed behavioral signatures based on the
JavaScript event loop, while Sun et al. [31] classified JavaScript
execution based on Web API calls. Le et al. [14] developed a rein-
forcement learning framework that generates filter list rules specific
to a site of interest. They showed that their approach was compara-
ble in visual breakage to manually-created filter lists.

JavaScript Analysis. Prior work that performs static or dy-
namic analysis on JavaScript to create “pre-filters” [7] for mali-
cious scripts, detect malicious scripts that camouflage as benign
scripts [6], and detect scripts that evade detection by adopting var-
ious obfuscation strategies [8]. In their analysis of the Top 10K
sites in the Alexa list, Moog et al. [21] found that 90% sites con-
tained a minified or obfuscated script. Fouquet et al. [9] presented a
static analysis approach to webpack bundles but created signatures
based on serializing their AST and hashing the result (compared

to the complex, Merkle tree-based approach) we present. Their
work does not consider the effect of various bundling and minifi-
cation options, which our work highlights as highly importance
in ensuring the effectiveness of URR as a real-world deployment.
Amjad et al. [3] employed stack traces (using dynamic analysis)
to identify functions responsible for tracking within scripts. Their
work addresses tracking in JavaScript but is not robust against
bundles, which include nested functions and commonly introduce
code transformations and stack information changes. Importantly,
their proposal addresses “tracking behavior”, while URR identified
specific libraries. Since our URR is not similarly limited in its ability
to identify specific libraries, the benefits provided by the two ap-
proaches can be combined. URR can be incorporated as a first step
to help narrow the scope of privacy-harming code to a small part of
a large, bundled resource. Thereafter, [3]’s tool can identify specific
functions within the library that perform privacy-harming actions,
further increasing the granularity of detection and attribution.

More relevant to our work, Rack and Staicu [25] presented a
method for detecting and partially reverse engineering bundles.
Importantly, [25] overlaps with the Gather Modules phase (§ 3.1) for
which we developed our own approach. To elaborate on the differ-
ences between the two approaches, we must divide the Gathering
Modules phase into two steps. First, [25] determines if a script is a
bundle by checking for specific text. Their use of keywords and con-
sideration of a small set of configurations will have limited effect
against bundle configurations in the wild. Our approach instead
considers code structure and can handle code transformations that
would frustrate [25]. Finally, they did not evaluate their approach’s
precision, recall, or accuracy against scripts gathered in the wild
(see Table 1). Second, after identifying bundles, [25] relies on source
maps and unmodified module names to parse bundles and break
them down into component modules, restricting their approach
to only work on 10% of real-world bundles. We instead present an
automated approach (see § 3.2 and § 3.3) that can reverse engineer
bundles regardless of the accidental availability of source maps.
Our approach does not rely on either of these developer choices
and works on a broad range of real-world sites.

7 CONCLUSION
Content blocking plays a crucial role in safeguarding privacy, en-
hancing performance, and preserving user autonomy online. How-
ever, the increasing use of bundlers presents a challenge – websites
often intermingle tracking code with benign code within a single
script, rendering traditional URL-based content blockers ineffective.
We present a framework, Unbundle-Rewrite-Rebundle (URR), that
detects bundles and reverse engineers them back to constituent
modules. We develop an approach to identify the privacy-harming
modules that we replace with benign alternatives. We demonstrate
the effectiveness of our system in identifying Webpack bundles
and further develop signatures for a fingerprinting library (Finger-
printJS), an advertising library (Prebid), and an analytics library
(Sentry). Our implementation can identify the bundled versions of
these libraries in the wild via a similarity threshold that minimizes
false negatives and prevents false positives within our training
data. Leveraging our approach, we found the use of these libraries
within bundled scripts on 697 sites of the Tranco 10K. Further,

shopee.com
shopee.com
shopee.co.id
shopee.co.th
shopee.tw

Unbundle-Rewrite-Rebundle CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

we implemented a prototype deployment of URR as a browser
extension and observed that the extension only adds 0.5s to the
DOM Interaction Time on a page visit. URR can expand existing
content-blocking approaches to combat the use of bundlers to hide
privacy-harming code. It can be further adapted to combat alterna-
tive bundling strategies and can be further used to detect the use of
other privacy-harming libraries to bolster web privacy protections.

ACKNOWLEDGEMENTS
We thank Victor Escudero, Marek Cwiek, and Zaheer Safi for per-
forming the manual website analysis. This material is based upon
work supported by the National Science Foundation (CNS-2247515).

REFERENCES
[1] Mshabab Alrizah, Sencun Zhu, Xinyu Xing, and Gang Wang. 2019. Errors, Misun-

derstandings, and Attacks: Analyzing the Crowdsourcing Process of Ad-blocking
Systems. In Proceedings of the Internet Measurement Conference (Amsterdam,
Netherlands) (IMC ’19). Association for Computing Machinery, New York, NY,
USA, 230–244. https://doi.org/10.1145/3355369.3355588

[2] Abdul Haddi Amjad, Danial Saleem, Muhammad Ali Gulzar, Zubair Shafiq, and
Fareed Zaffar. 2021. TrackerSift: untangling mixed tracking and functional web
resources. In Proceedings of the 21st ACM Internet Measurement Conference (Virtual
Event). Association for Computing Machinery, New York, NY, USA, 569–576.
https://doi.org/10.1145/3487552.3487855

[3] Abdul Haddi Amjad, Zubair Shafiq, and Muhammad Ali Gulzar. 2023. Blocking
JavaScript Without Breaking the Web: An Empirical Investigation. In Proceedings
on Privacy Enhancing Technologies. https://doi.org/10.56553/popets-2023-0087

[4] Sruti Bhagavatula, Christopher Dunn, Chris Kanich, Minaxi Gupta, and Brian
Ziebart. 2014. Leveraging Machine Learning to Improve Unwanted Resource
Filtering. Association for Computing Machinery, New York, NY, USA, 95–102.
https://doi.org/10.1145/2666652.2666662

[5] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros Kapravelos. 2021. De-
tecting Filter List Evasion with Event-Loop-Turn Granularity JavaScript Sig-
natures. In IEEE Symposium on Security and Privacy (SP). 1715–1729. https:
//doi.org/10.1109/SP40001.2021.00007

[6] Aurore Fass, Michael Backes, and Ben Stock. 2019. HideNoSeek: Camouflaging
Malicious JavaScript in Benign ASTs. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United Kingdom).
Association for Computing Machinery, New York, NY, USA, 1899–1913. https:
//doi.org/10.1145/3319535.3345656

[7] Aurore Fass, Michael Backes, and Ben Stock. 2019. JStap: a static pre-filter for ma-
licious JavaScript detection (ACSAC ’19). Association for Computing Machinery,
New York, NY, USA, 257–269. https://doi.org/10.1145/3359789.3359813

[8] Aurore Fass, Robert P. Krawczyk, Michael Backes, and Ben Stock. 2018. JaSt: Fully
Syntactic Detection of Malicious (Obfuscated) JavaScript. In Proceedings of the
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment.

[9] Romain Fouquet. 2023. Improving Web User Privacy Through Content Blocking.
Theses. Université de Lille. https://theses.hal.science/tel-04123409

[10] Kiran Garimella, Orestis Kostakis, and Michael Mathioudakis. 2017. Ad-blocking:
A study on performance, privacy and counter-measures. In Proceedings of the
ACM on Web Science Conference. 259–262.

[11] Arthur Gervais, Alexandros Filios, Vincent Lenders, and Srdjan Capkun. 2017.
Quantifying web adblocker privacy. In European Symposium on Research in Com-
puter Security. Springer, 21–42.

[12] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors. In 2021
IEEE Symposium on Security and Privacy (SP). 1143–1161. https://doi.org/10.1109/
SP40001.2021.00017

[13] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and
Zubair Shafiq. 2020. AdGraph: A Graph-Based Approach to Ad and Tracker
Blocking. In 2020 IEEE Symposium on Security and Privacy. 763–776. https:
//doi.org/10.1109/SP40000.2020.00005

[14] Hieu Le, Salma Elmalaki, Athina Markopoulou, and Zubair Shafiq. 2023. AutoFR:
Automated Filter Rule Generation for Adblocking. In 32nd USENIX Security
Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 7535–7552.
https://www.usenix.org/conference/usenixsecurity23/presentation/le

[15] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium (NDSS 2019). https:
//doi.org/10.14722/ndss.2019.23386

[16] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang. 2012. Know-
ing your enemy: understanding and detecting malicious web advertising. In
Proceedings of the ACM conference on Computer and communications security.
674–686.

[17] Xu Lin, Panagiotis Ilia, Saumya Solanki, and Jason Polakis. 2022. Phish in Sheep’s
Clothing: Exploring the Authentication Pitfalls of Browser Fingerprinting. In
31st USENIX Security Symposium (USENIX Security 22). USENIX Association,
Boston, MA, 1651–1668. https://www.usenix.org/conference/usenixsecurity22/
presentation/lin-xu

[18] Chao Liu, RyenW.White, and Susan Dumais. 2010. Understanding web browsing
behaviors through Weibull analysis of dwell time. In Proceedings of the 33rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Geneva, Switzerland) (SIGIR ’10). Association for Computing Machin-
ery, New York, NY, USA, 379–386. https://doi.org/10.1145/1835449.1835513

[19] Ralph C Merkle. 1987. A digital signature based on a conventional encryption
function. In Conference on the theory and application of cryptographic techniques.
Springer, 369–378.

[20] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar Weippl. 2017. Block me if you can: A
large-scale study of tracker-blocking tools. In 2017 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 319–333.

[21] Marvin Moog, Markus Demmel, Michael Backes, and Aurore Fass. 2021. Statically
Detecting JavaScript Obfuscation and Minification Techniques in the Wild. In
2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 569–580. https://doi.org/10.1109/DSN48987.2021.00065

[22] Alexandra Nisenoff, Arthur Borem, Madison Pickering, Grant Nakanishi, Maya
Thumpasery, and Blase Ur. 2023. Defining "Broken": User Experiences and Reme-
diation TacticsWhenAd-Blocking or Tracking-Protection Tools Break aWebsite’s
User Experience. In 32nd USENIX Security Symposium. USENIX Association, Ana-
heim, CA, 3619–3636. https://www.usenix.org/conference/usenixsecurity23/
presentation/nisenoff-broken

[23] Emmanouil Papadogiannakis, Panagiotis Papadopoulos, Nicolas Kourtellis, and
Evangelos P. Markatos. 2021. User Tracking in the Post-cookie Era: HowWebsites
Bypass GDPR Consent to Track Users. In Proceedings of the Web Conference
(Ljubljana, Slovenia). Association for Computing Machinery, New York, NY, USA,
2130–2141. https://doi.org/10.1145/3442381.3450056

[24] Enric Pujol, Oliver Hohlfeld, and Anja Feldmann. 2015. Annoyed users: Ads and
ad-block usage in the wild. In Proceedings of the Internet Measurement Conference.
93–106.

[25] Jeremy Rack and Cristian-Alexandru Staicu. 2023. Jack-in-the-box: An Empirical
Study of JavaScript Bundling on the Web and its Security Implications. In Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (Copenhagen, Denmark). Association for Computing Machinery, New
York, NY, USA, 3198–3212. https://doi.org/10.1145/3576915.3623140

[26] Kimberly Ruth, Aurore Fass, Jonathan Azose, Mark Pearson, Emma Thomas,
Caitlin Sadowski, and Zakir Durumeric. 2022. A world wide view of browsing
the world wide web. In Proceedings of the 22nd ACM Internet Measurement Confer-
ence (Nice, France). Association for Computing Machinery, New York, NY, USA,
317–336. https://doi.org/10.1145/3517745.3561418

[27] Michael Smith, Peter Snyder, Moritz Haller, Benjamin Livshits, Deian Stefan,
and Hamed Haddadi. 2022. Blocked or broken? Automatically detecting when
privacy interventions break websites. arXiv preprint arXiv:2203.03528 (2022).

[28] Michael Smith, Pete Snyder, Benjamin Livshits, andDeian Stefan. 2021. SugarCoat:
Programmatically Generating Privacy-Preserving, Web-Compatible Resource
Replacements for Content Blocking. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, Republic of
Korea). Association for Computing Machinery, New York, NY, USA, 2844–2857.
https://doi.org/10.1145/3460120.3484578

[29] Peter Snyder, Cynthia Taylor, and Chris Kanich. 2017. Most Websites Don’t
Need to Vibrate: A Cost-Benefit Approach to Improving Browser Security. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. Association for Computing Machinery, New York, NY, USA, 179–194.
https://doi.org/10.1145/3133956.3133966

[30] Peter Snyder, Antoine Vastel, and Ben Livshits. 2020. Who Filters the Filters: Un-
derstanding the Growth, Usefulness and Efficiency of Crowdsourced Ad Blocking.
In Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference
on Measurement and Modeling of Computer Systems (Boston, MA, USA) (SIGMET-
RICS ’20). Association for Computing Machinery, New York, NY, USA, 75–76.
https://doi.org/10.1145/3393691.3394228

[31] Jingxue Sun, Zhiqiu Huang, Ting Yang, Wengjie Wang, and Yuqing Zhang.
2021. A system for detecting third-party tracking through the combination
of dynamic analysis and static analysis. In IEEE INFOCOM 2021 - IEEE Confer-
ence on Computer Communications Workshops. 1–6. https://doi.org/10.1109/
INFOCOMWKSHPS51825.2021.9484564

[32] Apostolis Zarras, Alexandros Kapravelos, Gianluca Stringhini, Thorsten Holz,
Christopher Kruegel, and Giovanni Vigna. 2014. The dark alleys of madison
avenue: Understanding malicious advertisements. In Proceedings of the Internet
Measurement Conference. 373–380.

https://doi.org/10.1145/3355369.3355588
https://doi.org/10.1145/3487552.3487855
https://doi.org/10.56553/popets-2023-0087
https://doi.org/10.1145/2666652.2666662
https://doi.org/10.1109/SP40001.2021.00007
https://doi.org/10.1109/SP40001.2021.00007
https://doi.org/10.1145/3319535.3345656
https://doi.org/10.1145/3319535.3345656
https://doi.org/10.1145/3359789.3359813
https://theses.hal.science/tel-04123409
https://doi.org/10.1109/SP40001.2021.00017
https://doi.org/10.1109/SP40001.2021.00017
https://doi.org/10.1109/SP40000.2020.00005
https://doi.org/10.1109/SP40000.2020.00005
https://www.usenix.org/conference/usenixsecurity23/presentation/le
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://www.usenix.org/conference/usenixsecurity22/presentation/lin-xu
https://www.usenix.org/conference/usenixsecurity22/presentation/lin-xu
https://doi.org/10.1145/1835449.1835513
https://doi.org/10.1109/DSN48987.2021.00065
https://www.usenix.org/conference/usenixsecurity23/presentation/nisenoff-broken
https://www.usenix.org/conference/usenixsecurity23/presentation/nisenoff-broken
https://doi.org/10.1145/3442381.3450056
https://doi.org/10.1145/3576915.3623140
https://doi.org/10.1145/3517745.3561418
https://doi.org/10.1145/3460120.3484578
https://doi.org/10.1145/3133956.3133966
https://doi.org/10.1145/3393691.3394228
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484564
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484564

	Abstract
	1 Introduction
	2 Background
	2.1 Bundles and Relevant Concepts
	2.2 Motivating Example
	2.3 Properties of an Ideal Solution

	3 Unbundle-Rewrite-Rebundle Design
	3.1 Gathering Modules
	3.2 Processing Modules
	3.3 Comparing Modules
	3.4 Replacing Modules

	4 Evaluation
	4.1 Evaluation Dataset
	4.2 Framework Effectiveness
	4.3 Performance
	4.4 Replacements

	5 Discussion
	6 Related Work
	7 Conclusion
	References

