
SugarCoat: Programmatically Generating Privacy-Preserving,
Web-Compatible Resource Replacements for Content Blocking

Michael Smith
UC San Diego, USA

Pete Snyder
Brave Software, USA

Benjamin Livshits
Brave Software, USA

Deian Stefan
UC San Diego, USA

ABSTRACT
Content blocking systems today exempt thousands of privacy-
harming scripts. They do this because blocking these scripts breaks
the Web sites that rely on them. In this paper, we address this
privacy/functionality trade-off with SugarCoat, a tool that allows
filter list authors to automatically patch JavaScript scripts to re-
strict their access to sensitive data according to a custom privacy
policy. We designed SugarCoat to generate resource replacements
compatible with existing content blocking tools, including uBlock
Origin and the Brave Browser, and evaluate our implementation
by automatically replacing scripts exempted by the 6,000+ excep-
tion rules in the popular EasyList, EasyPrivacy, and uBlock Origin
filter lists. Crawling a sample of pages from the Alexa 10k, we find
that SugarCoat preserves the functionality of existing pages—our
replacements result in Web-compatibility properties similar to ex-
empting scripts—while providing privacy properties most similar
to blocking those scripts. SugarCoat is intended for real-world prac-
tical deployment, to protect Web users from privacy harms current
tools are unable to protect against. Our design choices emphasize
compatibility with existing tools, policy flexibility, and extensibil-
ity. SugarCoat is open source and is being integrated into Brave’s
content blocking tools.

CCS CONCEPTS
• Security and privacy → Browser security; • Information
systems→ Online advertising.

KEYWORDS
Web privacy, Web compatibility, Content blocking

ACM Reference Format:
Michael Smith, Pete Snyder, Benjamin Livshits, and Deian Stefan. 2021. Sug-
arCoat: Programmatically Generating Privacy-Preserving, Web-Compatible
Resource Replacements for Content Blocking. In 2021 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’21), November
14–19, 2021, Seoul, South Korea. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’21, November 14–19, 2021, Seoul, South Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A growing—and already large—fraction of Web users (37%) rely on
content blockers to prevent unwanted scripts from accessing and
tracking private user data [25]. Content blocking extensions like
uBlock Origin are some of the most downloaded browser extensions
(e.g., they top the charts for both Chrome and Firefox). And browsers
like Firefox, Brave, and Edge have even started shipping content
blockers built-in and enabled by default.

Thought content blocking significantly improves privacy [12],
existing approaches are a far cry from perfect. Most content block-
ing tools are extremely crude: they make the binary decision to
either block or allow a resource according to filter lists like Ea-
syList [10]. Unfortunately, the reality of the Web ecosystem doesn’t
match this binary: some resources are both privacy-harming and
necessary for page functionality. Filter list authors cannot currently
express a more permissive policy like “load resource 𝑈 , but pre-
vent it from accessing storage”, or a more fine-grained policy like
“only load the first JavaScript script from resource𝑉 , which bundles
(concatenates) multiple scripts”. This directly impacts the end user:
blocking necessary but potentially privacy-invading scripts breaks
pages, while allowing them potentially harms privacy.

In response, some content blocking tools—notably, uBlock Origin
and the Brave Browser—have added support for resource replace-
ments. Instead of simply blocking (or allowing) resources, these
tools can be configured to load alternative safe resources in place
of the original, privacy-harming versions. For example, instead
of loading Google Analytics (GA), both uBlock Origin and the
Brave Browser load a script that exposes an API that is similar to
GA’s—ensuring that pages that rely on GA continue to work—but
is otherwise inert, and thus does not harm user privacy1.

While resource replacements can be used to implement poli-
cies beyond the crude allow-or-deny binary, this flexibility comes
with a serious trade-off: scalability. Implementing effective resource
replacements requires domain expertise and is largely manual to-
day. For example, the aforementioned GA replacement script was
hand-crafted to “mock” the API exposed by Google Analytics and
is updated by hand every time Google updates their interface. Re-
source replacements that depend on implementation details (e.g., a
GA script replacement that cannot access privacy-sensitive data like
cookies, but retains the script’s functionality for tracking the num-
ber of visitors) must be updated whenever the original resources
are updated. In practice, this means that few scripts are actually
replaced—often those easiest to mock. Together, uBlock Origin and

1https://github.com/gorhill/uBlock/blob/master/src/web_accessible_resources/
google-analytics_ga.js

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/gorhill/uBlock/blob/master/src/web_accessible_resources/google-analytics_ga.js
https://github.com/gorhill/uBlock/blob/master/src/web_accessible_resources/google-analytics_ga.js


CCS ’21, November 14–19, 2021, Seoul, South Korea Michael Smith, Pete Snyder, Benjamin Livshits, and Deian Stefan

the Brave Browser only replace 27 scripts2. Meanwhile, the popular
filter lists published by EasyList, EasyPrivacy, and uBlock Origin
include more than 6,000 exception rules to unblock compatibility-
critical scripts. Tens of thousands of scripts remain unaltered and
unblocked even though they pose a risk to privacy.

To bridge this gap we developed SugarCoat. SugarCoat allows
filter list authors to automatically generate privacy-preserving re-
placements for arbitrary JavaScript scripts. The key insight to elimi-
nating the need for manual analysis and implementation of resource
replacements is to focus on and intercept accesses to the sources of
privacy-sensitive data (e.g., document.cookie and localStorage).
To this end, SugarCoat instruments JavaScript resources (and the re-
sources they create) to restrict their access to sensitive data sources
according to a custom policy (e.g., “load script 𝑈 , but prevent it
from accessing storage”).

SugarCoat generates resource replacements in two steps. First,
we use dynamic analysis to identify code points where JavaScript
code usesWeb APIs (e.g., functions, constructors, objects, and object
properties) that expose sensitive data source (§3).3 Then, we repair
the code at these code points to use “mock” implementations of the
same APIs, which expose the same interfaces but enforce privacy
policies specified by filter list authors.

While this approach shares some similarities with previous work
on tracking information flow in the browser [9, 18] and fine-grained
policy enforcement for JavaScript [28], it also differs in an important
way: we designed SugarCoat to be backwards-compatible, cross-
platform, and deployable. As such, SugarCoat generates resource
replacements that can be used by any content blocking tool that
supports resource replacements today, including uBlock Origin, the
Brave Browser, and AdGuard.

This paper makes four contributions to content blocking:
▶ The design of SugarCoat, a system for automatically rewriting

arbitrary JavaScript scripts to enforce privacy-protecting policies
(§3). SugarCoat allows filter list authors to replace JavaScript
scripts that cannot be blocked (e.g., because they are necessary
for functionality) but are potentially harmful for user privacy
with safe alternatives (e.g., scripts that preserve functionality
but cannot access sensitive data).

▶ An open-source and easy-to-use implementation of SugarCoat.
Our implementation extends PageGraph [37], a browser instru-
mentation system used to analyze the relationship between the
HTTP, DOM and JavaScript layers of Web applications. Specifi-
cally, we modify the underlying V8 JavaScript engine to de-alias
and deobfuscate JavaScript code to identify source code points
where sensitive APIs are used. Our changes have already been
integrated into PageGraph upstream.

▶ An evaluation of SugarCoat on 231 unique in-the-wild tracking-
and-advertising JavaScript scripts (§4). These scripts are labeled
by filter lists as privacy harming (or advertising related), but
nevertheless allowed by current connect blocking tools because
blocking them would break Web pages. SugarCoat can rewrite

2https://github.com/gorhill/uBlock/blob/master/src/web_accessible_resources
3Though we would ideally do this statically, statically analyzing JavaScript to identify
such code points is notoriously hard—both because JavaScript is highly dynamic and
because real-world JavaScript is “obfuscated” via minimization and bundling tools.

1 // Served from tracker.com/track.js
2 window.track = (callback) => {
3 // Generate tracking token if one doesn 't exist.
4 if (! localStorage["id"]) {
5 localStorage["id"] = Math.random ();
6 }
7 const id = localStorage["id"];
8 // Record the page load.
9 fetch("// tracking.com/rec?id=" + id)
10 .then(_ => {
11 // If a callback was provided , call it.
12 if (callback) callback ();
13 });
14 };

Figure 1:Motivating example of a tracking script which sometimes causes compati-
bility breakage when blocked.

1 <!-- Page served from example.org -->
2 <script src="// tracker.com/track.js"></script>
3 <script>
4 setup(); // defined elsewhere
5 track(); // defined in track.js
6 </script>
7 <p>Page start </p>

Figure 2: Simple example of a Web page including a tracking script.

all these scripts, blocking access to sensitive data, without sig-
nificantly impacting functionality or page performance.

▶ The complete dataset of all SugarCoat resource replacements
(before and after rewriting) and associated filter list rules, so that
our rewritten scripts can be deployed in existing tools.

2 MOTIVATION AND BACKGROUND
This section gives a simplified example of how content blocking
typically works on the Web, how content blocking can uninten-
tionally break Web sites, and the limited, unsatisfactory options
content blocking tools currently turn to in such cases. The section
concludes by outlining the properties needed for a better solution
to Web-compatible content blocking.

2.1 Motivating Example
In this section we explain how content blocking works and why

content blocking sometimes unintentionally breaks Web sites.

2.1.1 Typical Tracking Script Integration. Webeginwith a toy track-
ing script, presented in Figure 1. In this example, the script is served
from https://tracker.com/track.js, and defines a global function,
track. This function generates a unique identifier, persists it in
storage, and sends the identifier to a recording service. The track
function also takes an optional callback function that, if provided,
will be called after the tracking has occurred.

Next, Figure 2 presents an example of how a page might integrate
this tracking script. In this example, served from https://example.
org, the page loads the tracking script. The page then includes
an inline script that sets up the page’s functionality with a call
to a setup() function (defined elsewhere), and then performs the
privacy-harming operation by calling track().

2.1.2 Typical Content Blocking Scenario. Content blocking tools
are well-equipped to protect privacy given the above integration
pattern. Once a privacy-harming script has been identified, its URL
is added to a common list (e.g., EasyList [10] and EasyPrivacy [11]),
either verbatim or generalized using regular-expression like pat-
terns. Content blocking tools like uBlock Origin [19] or AdGuard [2]
then pull from these centralized lists, so that many content blocker
users will benefit from the privacy improvement.

https://github.com/gorhill/uBlock/blob/master/src/web_accessible_resources
https://tracker.com/track.js
https://example.org
https://example.org


SugarCoat CCS ’21, November 14–19, 2021, Seoul, South Korea

1 <!-- Page served from example.org -->
2 <script src="// tracker.com/track.js"></script>
3 <script>
4 track(setup);
5 </script>
6 <p>Page start </p>

Figure 3: Example of content blocking breaking a page.

In the above case, a filter list contributor might add the rule
||tracker.com/track.js. Content blocking tools using this list
would then no longer fetch the tracking script, improving privacy
and performance for these users.

When a person using a content blocking tool re-visits https:
//example.org (again depicted in Figure 2), now with the new filter
rule enabled, the page will execute differently. The content block-
ing tool will block the request to https://tracker.com/track.js. The
setup() function will then be called (which, in this example is
not affected by blocking). However, because the tracking script
was blocked, the track() function will not have been defined, and
that call will fail. Instead of performing the privacy-harming be-
havior, an exception will be thrown. Since the page’s functionality
has already been set up with the setup() function, the page will
otherwise behave as normal from the perspective of the user.

2.1.3 Typical Breaking Scenario. Finally, we present an alternative
example, wherein content blocking causes a page to break. Consider
the example in Figure 3, consisting of the same functionality but
structured differently. Now, instead of calling setup() and then
track(), setup is passed as a callback function to track; setup()
will only run after the track() completes successfully.

Without content blocking, the page will run correctly (though
privacy will be harmed). https://tracker.com/track.js will be fetched,
meaning track() will be defined, and so setup() will eventually
be called. In the content blocking case, though, the tracking script
is not loaded, so an exception will be thrown; setup() will never
be called, resulting in a broken page.

2.2 Current Options for Content Blocking
The previous section gives an example of how content blocking
tools often sacrifice functionality or privacy. Next, we describe the
different ways content blocking tools could try to address this and
their limitations.

2.2.1 Exception Rules. The simplest, and most common, option
is to add an exception, and not block privacy-harming scripts on
Web sites that break. Exceptions have the benefit of requiring the
least time and expertise from filter list authors; this is important
because filter lists are often crowdsourced, which limits how much
expertise can be required for participation.

However, compatibility-through-exceptions has two downsides.
First, exception rules re-enable the privacy harm the tool intended
to fix. And second, exception rules creates negative incentives for
Web site authors, by “rewarding” sites that intentionally break in
the presence of content blocking.

2.2.2 Manually Developed Resource Replacements. A second ap-
proach is tomanually develop alternative implementations of privacy-
harming scripts, implementations that remove the privacy-harming
functionality but otherwise maintain the code’s API “shape”. Con-
tent blocking tools can load these alternative implementations in

place of the original code, protecting privacy but otherwise allow-
ing the page to function as normal.

Unfortunately, generating resource replacements is a manual,
time-consuming task that requires domain expertise: privacy en-
gineers need to understand and reverse engineer large, minified
JavaScript libraries. This coupled with the high maintenance costs
make manually-developed resource replacements practical for only
the most common privacy-harming scripts on the Web.

2.2.3 Sandboxing through Runtime Modifications. A third approach
is to modify the JavaScript engine to apply privacy protections at
runtime. Scripts labeled as privacy-harming would still be fetched,
but “tainted” and given different privileges than other scripts. This
approach has the upside of potentially addressing a large number
of compatibility concerns, but is prohibitively expensive.

First, the JavaScript engine modifications needed to robustly
enforce such policies are complex and costly. Labels need to be
tracked and propagated to “downstream” scripts: scripts should only
be as trusted as the scripts that included them. Additionally, a robust
solution would need to prevent scripts from loosing their labels
by “laundering” code through DOM sinks and network requests,
and would complicate optimizations that opportunistically defer
code compilation, among other concerns. In short, the cost of such
a system has (so far) proven prohibitive.

Second, content blocking tools benefit from crowdsourcing, or
the contributions of large number of semi-expert contributors. Ap-
proaches that only work in one browser would forfeit many of the
benefits that crowdsourcing provides, by fracturing the set of possi-
ble contributors. Unless all browser vendors implement the kind of
runtime taint information needed for a “sandboxing” approach to
work (something which seems unlikely for the immediate future),
compatibility solutions that require engine modifications will be
limited in their breadth and usefulness.

2.3 Properties of an Ideal Solution

We outline the properties of general, Web-scale solution to fixing
Web compatibility issues in content blocking tools.

First, a robust solution to privacy-vs.-compatibility problems in
content blocking tools must maintain the privacy benefits of
current blocking tools. This implies that privacy-harming code
should not be able to access privacy-affecting APIs.

Second, a solution shouldminimize impact on benign Web
site behavior, both in privacy-affecting code (i.e., scripts labeled
by filter lists), and in surrounding code. This rules out approaches
that make global changes to Web APIs; changes and interventions
should be local to privacy-harming scripts.

Third, a solution must be scalable and automated, so that it
can be applied to the wide range of privacy-harming scripts on
the Web. Solutions that require significant expertise and time (e.g.,
manual resource replacement writing) can only address a few cases.

Finally, a solution should be backwards compatible with ex-
isting browsers, to maintain the benefits of crowdsourcing filter
list generation. Solutions that only work in one browser or one tool
will reduce the number of people who can contribute to, test, and
maintain the filter lists that many content blocking tools rely on.

https://example.org
https://example.org
https://tracker.com/track.js
https://tracker.com/track.js


CCS ’21, November 14–19, 2021, Seoul, South Korea Michael Smith, Pete Snyder, Benjamin Livshits, and Deian Stefan

Tracing scripts via PageGraph- 
instrumented browser (§3.1)

Graph of page
 actions, requests,

and causes

List of target 
scripts to rewrite

Identifying API call sites via 
graph analysis (§3.2)

Source locations
of API calls

API
mocks

Privacy  
policy

(optional)

Analyzing and rewriting JavaScript 
source files (§3.3)

Privacy- and compatibility-preserving 
scripts (i.e., resource replacements)

List of pages using  
privacy-affecting scripts

Figure 4: Generating privacy-preserving resource replacements with SugarCoat. The
user records the execution ofWeb pages using a PageGraph-instrumented browser. The
produced graphs and user-supplied list of target privacy-harming scripts are then used
to identify the locations of calls sites within those scripts where privacy-sensitive Web
APIs are accessed. Finally, these locations, together with a set of privacy-preserving API
mocks (provided by SugarCoat, but customizable) and optional user-supplied privacy
policies, are used to generate rewritten scripts. These privacy- and compatibility-
preserving rewritten scripts can then be used as resource replacements with existing
content-blocking tools like uBlock Origin and the Brave Browser.

3 SUGARCOAT DESIGN

In this section we present the design of SugarCoat, a system for
programmatically generating privacy-preserving resource replace-
ments. SugarCoat combines dynamic browser instrumentation with
static code analysis to patch out the privacy-harming portions of
real-world JavaScript code. Privacy developers can use SugarCoat to
solve the privacy/compatibility trade-off without manually reverse-
engineering scripts or writing individual resource replacements.

Generating resource replacements with SugarCoat is a three-step
process (see Figure 4):
▶ The privacy developer visitsWeb pageswith ourmodified PageGraph-

instrumented browser, which dynamically traces the execution
of all scripts embedded by the visited pages (§3.1).

▶ The developer marks certain scripts that they consider privacy-
harming, and feeds this target script set into the first stage of the
SugarCoat pipeline. Using graph analysis, this stage builds behav-
ioral profiles of the target scripts from the collected PageGraph
browser data, concretizing privacy-relevant Web API accesses
to textual locations in the JavaScript source (§3.2).

▶ The second pipeline stage produces resource replacements by
analyzing and rewriting the source code of the target scripts
to redirect the identified API accesses to “mock” implementa-
tions, which have the same API signatures, but apply a privacy-
preserving policy (§3.3).

script actor
id=123, type=classic,
url=“https://a.com/a.js”,
src=“(function () { … })()”

DOM node
id=789, tag=“img”

insert action
parent=456,
sibling=null

DOM parent relationshipDOM node
id=456, tag=“div”

Figure 5: PageGraph representation of a script inserting a DOM node at runtime.

All of these steps are performed “offline” by privacy developers. The
generated resource replacements are then deployed to end users in
existing browser content blocking tools.

3.1 Tracing Scripts with PageGraph
SugarCoat uses recordings of how privacy-harming scripts behave
at runtime to drive the generation of non-privacy-harming resource
replacements. Privacy developers collect this behavioral data by
visiting Web pages in a modified browser equipped with Page-
Graph [37], an instrumentation system for Blink- and V8-based
browser engines. The browser can either be driven manually or by
scripted automation (e.g., in our evaluation we use Puppeteer [13]).

For all pages loaded in the instrumented browser, PageGraph
records page “actions” that occur during execution (e.g., DOM node
modifications, Web API calls, HTTP requests), the “actors” respon-
sible for the actions (e.g., the parser, running scripts), and the “re-
ceivers” which are acted upon (e.g., DOM nodes, network resources,
other actors), along with relevant attributes and metadata. This
history of actions is represented as an interconnected directed
graph, with nodes representing actors and receivers, and edges
representing actions as well as the DOM tree relationships in the
page. Figure 5 illustrates the graph structure resulting from a script
inserting a DOM node at runtime, recorded by PageGraph as (a) a
node representing the script (the “actor”), (b) a node representing
the inserted DOM node (the “receiver”), (c) an edge connecting the
two nodes, representing the insertion (the “action”), and (d) an edge
connecting the inserted DOM node to its new parent DOM node.
The nodes and edges are annotated with metadata, like the source
URL and V8 script ID for the script actor node, and references to
parent and sibling nodes for the insertion action edge.

For this work, we extended PageGraph with additional capabil-
ities for tracking the Web API accesses performed by scripts. By
hooking into the JavaScript binding layer, PageGraph can now track
accesses to arbitrary Web APIs as actions in the graph, as long as
simple annotations are added to the WebIDL code defining the APIs
(see Appendix C for an example). For each access, we record the
concretized JavaScript source text location within every script on
the stack at the point the access occurs, saving this as metadata in
the graph. This data is collected for all scripts embedded in pages
visited with the PageGraph browser, and then extracted from the
PageGraph recordings by the SugarCoat pipeline.

3.2 Identifying Call Sites via Graph Analysis
The first stage of the SugarCoat pipeline builds behavioral profiles
of privacy-harming scripts. It takes as input a set of target scripts, in
source code form, and PageGraph recordings of pages which embed
the target scripts. SugarCoat matches the target script source code
with script actor nodes in the PageGraph graphs. It then performs



SugarCoat CCS ’21, November 14–19, 2021, Seoul, South Korea

1 // tracking.js
2 function initializeTracking () {
3 function getTrackingId (persistent) {
4 const storage =
5 window [( persistent ? "local" : "session") + "Storage"];
6 let trackingId = storage.getItem("trackingId");
7 if (! trackingId) {
8 trackingId = Math.random ();
9 storage.setItem("trackingId", trackingId);
10 }
11 return trackingId;
12 }
13 ...
14 return { getTrackingId , ... };
15 }

Figure 6: Simple privacy-harming script. The getTrackingId function returns a
unique tracking identifier for the user, stored to disk (via the localStorage API) if
the caller requests persistence, or session-only otherwise (via sessionStorage).

two graph traversals: one to expand the target script set, and one to
generate a trace map to drive script rewriting later in the pipeline.

3.2.1 Expanding the Target Script Set. A script can dynamically in-
ject other scripts into the page at runtime—this is a common pattern
for ad and tracking scripts in particular. Blocking one script has the
knock-on effect of blocking the scripts it would have injected into
the page if allowed to run. These additional scripts may not be in
filter lists, but may still be privacy-harming. To provide equivalent
coverage without blocking, SugarCoat expands the input target
script set to include all scripts injected by another target script (and
all scripts injected by those scripts, recursively).

The most common method by which scripts inject other scripts
is to insert <script> tags into the DOM. SugarCoat looks for this
pattern in the input PageGraph graphs, following insertion action
edges out from target script actors to find the DOM nodes that
they insert at runtime, then following “execute” action edges out
from the inserted DOM nodes to reveal scripts that they cause to be
executed. These scripts can then be added to the target script set.

3.2.2 Trace Map Generation. SugarCoat generates non-privacy-
harming resource replacements from the target scripts by rewriting
their source code to “neutralize” calls to privacy-relevant APIs. To
drive the rewriting stage, SugarCoat needs to identify the textual
locations of these calls in the source code of the target scripts. The
highly dynamic nature of JavaScript makes it hard to statically
enumerate these call sites. Obfuscation, minification, and other
label-stripping practices common in Web build systems make this
harder. We sidestep these difficulties by observing actual script
behavior dynamically, instead of trying to predict it statically.

Consider the simple privacy-harming script (tracking.js) in
Figure 6. The function getTrackingId in this script uses either the
localStorage or the sessionStorage API to store and retrieve a
user tracking identifier. It accesses these APIs conditionally and
indirectly. This makes it hard to statically identify the call site. But
at runtime the browser engine knows exactly when these APIs are
called and which scripts are on the stack when the calls occur. Our
extended PageGraph records these calls in the graph data (Figure 7).

Then instead of guessing which pieces of a script might corre-
spond to privacy-relevant API calls, SugarCoat mines the input
PageGraph recordings for calls observed at runtime. For each “Web
API access” graph node linked to a privacy-relevant API, SugarCoat
loops through the connected scripts, starting with the script most
recently pushed to the JavaScript stack at the time of the call. The
call is attributed to the first script that is in the target script set. In
Figure 7, for example, tracking.js is at the top of the stack when a

stack frame
srcLocation=58,
frameIndex=1

Web API
name=“Window#localStorage”,
type=attribute

script actor
id=123, type=classic,
url= “tracking.js”, src=“...”

script actor
id=456, type=classic,
url= “userInterface.js”, src=“...”

stack frame
srcLocation=275,
frameIndex=0

Web API access
type=attributeGet

Figure 7: PageGraph representation of a Web API access. The scripts on the stack at
the time of the access are linked by edges to the access node, recording their order on
the stack and the locations within the JavaScript source text.

Network APIs Description

fetch Modern HTTP request API
XMLHttpRequest Legacy HTTP request API

Storage APIs Description

document.cookie Script access to origin cookies
localStorage Persistent key-value storage
sessionStorage Session-duration key-value storage
Storage Storage interface base class

Figure 8: Privacy-relevant APIs targeted by SugarCoat. We target a limited set of
privacy-relevant APIs but design SugarCoat to be extensible (to cover arbitrary APIs).

call is logged to localStorage, and if tracking.js is in the target
script set, then SugarCoat attributes this call to tracking.js at
source location 58 (i.e., the 58th character in the script source text).
Otherwise, userInterface.js is next on the stack, and is checked
for its membership in the target script set; and so on.

The output of this process is a trace map linking target script
source locations to sets of privacy-relevant APIs accessed at those lo-
cations, in the form (target script, code location) → {Web API, . . .}.

3.3 Analyzing and Rewriting JavaScript
Next, SugarCoat transforms the original source code of the tar-
get privacy-harming scripts into non-privacy-harming resource
replacements, by redirecting privacy-relevant Web API accesses
to harmless “mock” implementations of those APIs. Source code
locations where these accesses occur are drawn from the trace
map produced by the previous pipeline stage. For each API that
should be intercepted, the privacy developer supplies a mock im-
plementation, written in JavaScript, which emulates its expected
behavior in a compatible but privacy-preserving way (e.g., a Web
Storage API mock would keep all data in memory, while a Fetch
API mock would return fake responses for network requests). Mock
implementations are written once per API, not per script, and are
reusable and shareable between resource replacements. Privacy
developers can optionally specify policies which enable and disable
mocks for each target script, controlling the capabilities available
to the rewritten versions. Figure 8 lists the initial set of Web APIs
for which we implemented mocks; see Section 5.2 for a discussion
of the scalability of developing additional mocks for SugarCoat.

SugarCoat produces resource replacements in three steps. First,
it parses target scripts into abstract syntax trees (ASTs) using the
ESPrima4 JavaScript parser. Then, it rewrites the script ASTs to
redirect privacy-relevant API calls to mock implementations. Fi-
nally, it transforms the rewritten ASTs into JavaScript source and
bundles the source alongside the mock implementations in a form

4https://esprima.org

https://esprima.org


CCS ’21, November 14–19, 2021, Seoul, South Korea Michael Smith, Pete Snyder, Benjamin Livshits, and Deian Stefan

1 function getTrackingId (persistent) {
2 const storage = $mockLocalStorage;
3 let trackingId = storage.getItem("trackingId");
4 if (! trackingId) {
5 trackingId = Math.random ();
6 storage.setItem("trackingId", trackingId);
7 }
8 return trackingId;
9 }

Figure 9: The getTrackingId function (Figure 6) naively rewritten. This hypothetical
implementation observed only the localStorage pathway while collecting script
behavioral data, and so assumed that the value assigned to storage (highlighted)
always evaluates to localStorage. Directly replacing this expression drops the
sessionStorage code path, changing the meaning of the code.

1 function getTrackingId (persistent) {
2 try {
3 $replace(window , "localStorage", $mockLocalStorage);
4 $replace(window , "sessionStorage", $mockSessionStorage);
5 const storage =
6 window [( persistent ? "local" : "session") + "Storage"];
7 let trackingId = storage.getItem("trackingId");
8 if (! trackingId) {
9 trackingId = Math.random ();
10 storage.setItem("trackingId", trackingId);
11 }
12 return trackingId;
13 } finally {
14 $restore(window , "localStorage");
15 $restore(window , "sessionStorage");
16 }
17 }

Figure 10: A high-level illustration of SugarCoat’s rewriting strategy, applied
to the getTrackingId function from Figure 6. Injected code is highlighted. The
localStorage and sessionStorage APIs are temporarily overwritten with mock
implementations, so the function body code—even though it has not been changed—
will access those mocks when it runs.

consumable by off-the-shelf content blocking tools. We describe
the most interesting step—the script rewriting—next.

3.3.1 Script AST Rewriting. Given the trace map of source code
locations to privacy-relevant Web API calls made at those locations,
SugarCoat selectively rewrites the target script ASTs so that the
calls are redirected to mock implementations of the same APIs.

A naive approach to rewriting scripts would be to perform an in-
place replacement of the exact JavaScript expressions encoding the
Web API accesses (e.g., window.localStorage) with expressions
that access the mocks instead (e.g., $mockLocalStorage). This, un-
fortunately, is fragile: Figure 9 shows how this could unintentionally
change the meaning of the getTrackingId function from Figure 6
and break compatibility.

Our approach is to work at the JavaScript scope level instead
of the expression level. A “scope” here refers to a function body
or the top-level statements in a script; we ignore block scoping.
We wrap each scope containing a privacy-relevant Web API call
with entry and exit guards. While control flow is inside a wrapped
scope, references in the JavaScript environment to the specific APIs
called within that scope are temporarily replaced with their mock
equivalents. As shown in Figure 10, the original code is wrapped
in a try-finally block; when control flow enters the block, entry
guards overwrite localStorage and sessionStoragewith mocks;
when control flow exits the block, exit guards restore them. In Ap-
pendix A we describe how SugarCoat rewrites different constructs
to preserve the scoping of code placed within these try-finally
blocks.

This scope-based approach ensures that calls into privacy-relevant
APIs can be redirected even when the calls themselves are per-
formed by separate, shared libraries like jQuery—shared libraries
which may be used legitimately by other, non-privacy-harming

Input: scope: top-level scope AST node
trace: map of code location→ {Web API, ...}

(start, end) ← get source code range covered by scope
trace’← remove and collect from trace all entries for code locations
within [start, end]

foreach nested ∈ child scope AST nodes of scope do
recursively rewrite nested with trace’

end
if trace’ is not empty then

webAPIs← set of remaining Web APIs in trace’
insert entry and exit guards for webAPIs into scope

end

Figure 11: Scope-narrowing rewriting algorithm. The AST rewriter follows this pro-
cedure to insert entry- and exit-guards that redirect Web API calls to mocks.

scripts on the page, and therefore aren’t targeted for rewriting. As
discussed in Section 3.2.2, such calls are attributed to the target
script most recently pushed onto the stack at the time the call
occurs. When a target script calls into a shared library, and that
shared library calls a privacy-sensitive API on behalf of the target
script, we inject mocks in the calling target script before control is
transferred to the library and remove them after the library returns
control to the target script.

Scope-Narrowing Rewriting Algorithm. SugarCoat’s AST rewriter
is tasked with inserting guards into the AST such that all code
locations in the trace map are correctly covered by corresponding
guards, while minimizing performance overhead, code bloat from
excessive guard insertion, and impact on the rest of the JavaScript
environment. To do this, the rewriter follows the algorithm in
Figure 11, starting from the AST node corresponding to the top-
level script scope and descending recursively into nested function
scopes. Each scope “consumes” from the trace map the privacy-
relevant code locations between the start and end points covered by
the scope’s AST node. The rewriter then descends into the scopes
nested within the current scope, which in turn “consume” the code
locations that belong to them. After traversal, the current scope is
left with a list of privacy-relevant code locations for which it is the
narrowest, most deeply-nested containing scope. Whenever this
list is non-empty, SugarCoat wraps the scope with entry and exit
guards corresponding to the Web APIs used at the code locations.

Figure 10 shows how rewriting applies to the tracking.js
script from Figure 6. In the original script, localStorage and
sessionStorage are used in a nested scope: the getTrackingId
function scope, contained within the initializeTracking func-
tion scope, which is contained in the top-level script scope. Since
the getTrackingId function scope is the narrowest scope contain-
ing the code location, the rewriter selects this scope.

3.3.2 Code Generation and Bundling. As a final step, SugarCoat
turns the rewritten ASTs into JavaScript resource replacements.
Each resource replacement script is prefixed with mock implemen-
tations of the privacy-relevant Web APIs used in the original script
(we give a simple Fetch API mock in Appendix B). The rewritten
AST is converted to JavaScript code like the sample in Figure 10, and
then appended after the mock implementations. SugarCoat pack-
ages the resulting source code files into a resource replacement
bundle, and generates accompanying EasyList-style filter rules5 to
intercept requests to the original scripts and redirect them to the

5https://github.com/gorhill/uBlock/wiki/Static-filter-syntax#redirect

https://github.com/gorhill/uBlock/wiki/Static-filter-syntax#redirect


SugarCoat CCS ’21, November 14–19, 2021, Seoul, South Korea

Crawl Configuration

Measurement period 11/25 – 12/04/2020
Filter lists used Brave, EasyList,

EasyPrivacy,
uBlock Origin

# exception rules 6,405
# pages visited 6,195
. . . embedding an excepted script 999
. . . which accessed privacy-relevant APIs 902

JavaScript Crawl Statistics

# scripts loaded 20,981
. . . matching exception rules 3,034
. . . rewritten by SugarCoat 1,701
. . . after deduplication by source code 231
# API calls intercepted by SugarCoat 139,589
. . . storage API calls 130,494
. . . network API calls 9,095

Figure 12: Summary of data gathered to evaluate SugarCoat.

resource replacements. The output can be dropped into any compat-
ible content blocking tool, such as uBlock Origin [19], AdGuard [2],
or the Brave Browser’s adblock-rust6 engine.

4 EVALUATION
We evaluate SugarCoat across three dimensions: privacy, compati-
bility, and performance.

4.1 Evaluation Dataset
The privacy, compatibility, and performance measurements pre-
sented in this section all draw from the same dataset, consisting
of 902 popular Web pages measured under three conditions. All
measurements were performed from a residential IP address in Cal-
ifornia, using an instrumented, Chromium-based browser driven
by the Puppeteer7 automation library. For each page crawled, we
waited for the document’s onload event to trigger, and then waited
a further 15 seconds, to allow scripts to execute.

4.1.1 Web Page Selection. We started by collecting the URLs of
Web pages containing privacy-harming scripts which would have
been blocked by filter lists, but are excepted for compatibility. We
generated this dataset in several steps.

First, we produced a list of Web page URLs from popular sites.
We crawled each site in the Alexa 10k, starting from the landing
page. For each page, we randomly selected a same-site link on the
page (i.e., a link pointing to another page on the same eTLD+1). We
repeated the process a maximum of four times, yielding a maximum
of five page URLs per Web site, including the landing page.

Second, we randomly sampled Web pages from this list, looking
for pages which included at least one excepted script. Specifically,
we inspected the network requests made by each page against the
most popular filter lists (Figure 12) using the adblock-rs library8.
Our crawler visited 6,195 pages in total and found 999 pages which
included at least one excepted script.

Third, we further reduced this set of pages to those where an ex-
cepted script accessed at least one privacy-relevant API (Figure 7).

6https://github.com/brave/adblock-rust
7https://developers.google.com/web/tools/puppeteer/
8https://www.npmjs.com/package/adblock-rs

We did so by re-crawling the remaining pages in a PageGraph-
enabled browser. From the PageGraph recordings of each page, we
identified which scripts access which APIs, and which scripts bring
additional “downstream” scripts into the page (e.g., by injecting
<script> tags). For each re-crawled page, we looked for any in-
stances of privacy-relevant APIs being accessed either (a) directly,
by an excepted script or (b) indirectly, by a “downstream” script
injected by an excepted script. We found that 902 of the 999 pages
(90%) contained at least one such instance, and marked the relevant
scripts as “target” scripts for rewriting with SugarCoat.

These pages loaded 20,981 scripts. Of these, 1,701 matched all
criteria for rewriting; after deduplicating by checking for scripts
with matching source code, we were left with 231 unique target
scripts. Figure 12 summarizes the properties of the crawl data.

4.1.2 Measurements of Selected Pages. We visited each of the col-
lected pages under three conditions, to determine how page execu-
tion differs when the privacy-relevant target scripts are excepted,
blocked, and rewritten. Every condition used the same instrumented
PageGraph-enabled browser, but differed in the set of filter rules
fed into the browser’s content blocking engine:
▶ “Default” rule set: the full set of rules assembled from popular

filter lists, ensuring that the excepted target scripts would be
fetched and executed.

▶ “Blocked” rule set: the full set of filter list rules, but with the
relevant exception rule(s) removed, ensuring that the previously-
excepted scripts would now be blocked.

▶ “Rewritten” rule set: the full set of filter list rules, but with the
relevant exception rule(s) exchanged for resource replacement
rules, ensuring that SugarCoat-rewritten versions of the target
scripts would be loaded and executed instead of the originals.

In all three conditions, all scripts other than target scripts were
blocked (or not) according to the original filter list rules.

For each visit under each condition, we recorded the full result-
ing PageGraph output (including all DOM modifications, network
requests, script executions, etc.), the original target script source
text, and the resource replacements generated by SugarCoat.

Finally, we revisited each of the 902 pages in an unmodified
browser (without PageGraph), under each of the three conditions
above. We used this additional crawl to measure the performance of
pages using SugarCoat-generated resource replacements, as com-
pared to the original excepted scripts, and to demonstrate that
SugarCoat-generated resource replacements can be used by popu-
lar content blockers in “stock”, unmodified Web browsers.

4.2 Privacy Evaluation
We measure how effectively SugarCoat removes privacy-relevant
behaviors from target scripts (and their downstream dependen-
cies), and the overall privacy impact of using SugarCoat-generated
resource replacements on a page.

4.2.1 Script Level Evaluation. We measure how effectively Sugar-
Coat improves privacy at the script level, comparing the recorded
behavior of the original versions of the Web-compatibility-critical
scripts in our evaluation dataset with the behavior of the rewritten
versions. Specifically, we count the number of storage and network
API calls (Figure 8) made by each original script and its rewritten

https://github.com/brave/adblock-rust
https://developers.google.com/web/tools/puppeteer/
https://www.npmjs.com/package/adblock-rs


CCS ’21, November 14–19, 2021, Seoul, South Korea Michael Smith, Pete Snyder, Benjamin Livshits, and Deian Stefan

Original Rewritten

# Storage Calls (Mean) 77 0
# Storage Calls (Median) 17 0
# Storage Calls (Total) 130,494 0

# Network Calls (Mean) 5 0
# Network Calls (Median) 0 0
# Network Calls (Total) 9,095 0

Figure 13:Measurements of the number of storage and network calls made by excepted
scripts when executed on the pages that include them, both in their original form, and
after being rewritten by SugarCoat.

0.00

0.25

0.50

0.75

1.00

1 10 100 1000 10000

API calls per page

F
ra

ct
io

n 
of

 p
ag

es

Legend
rewritten (network)
default (network)
rewritten (storage)
default (storage)

Figure 14: CDFs of the number of storage and network JavaScript APIs called on 902
pages, when privacy-affecting scripts are excepted and run normally (“default”), and
when they are replaced with SugarCoat-rewritten versions (“rewritten”).

counterpart. As Figure 13 shows, SugarCoat dramatically reduces
the number of privacy-affecting behaviors scripts engage in.

4.2.2 Page Level Evaluation. We assess the page-level impact of
SugarCoat by measuring the differences in privacy-relevant behav-
iors between “default” and “rewritten” pages (§4.1.2). For each of
the 902 pages in our dataset, we extract total counts of JavaScript
storage and network API calls from the PageGraph data. Figure 14
presents this measurement as overlapping cumulative distribution
functions (CDFs) of these counts. We find that using SugarCoat-
generated resource replacements in place of the original target
scripts results in significantly fewer privacy-relevant behaviors on
each page, while the use of the same APIs by non-privacy harming
(i.e., non-target) scripts is largely unaffected.

We note that this comparison likely under-emphasizes the privacy
improvements SugarCoat provides. Not all network requests and
storage operations have the same risks; they can be used for privacy-
neutral or privacy-harming purposes. The scripts that SugarCoat
targets in these measurements have been identified by filter list au-
thors as particularly privacy threatening (i.e., they were blocked at
one point) but then nevertheless allowed to load (generally to avoid
breaking compatibility). We therefore suspect that the storage and
network operations in the target, excepted scripts are particularly
likely to be privacy harming, and so using SugarCoat to prevent
those operations is particularly likely to be privacy enhancing.

4.3 Web Compatibility Evaluation
Our next measurements confirm that SugarCoat does not harm de-
sirable page functionality when providing strong privacy benefits.

4.3.1 Qualitative Compatibility Evaluation. We first evaluated Sug-
arCoat’s effect on Web compatibility though a qualitative, double-
blind, manual evaluation, adopting the approach from [35]. This

Measure

# evaluators 6
# Web sites evaluated 50
% agreement 90%

Measure Mean Median

When blocking 2.86 3
With SugarCoat 1.03 1

Figure 15: Comparison of how often 6 evaluators considered a Web site working, on a
scale of 1 (working) to 3 (broken), when blocking a privacy-harming but compatibility-
critical script, and when using a SugarCoat rewritten version of the script.

process also served as a test of applying SugarCoat to address real-
world Web compatibility issues introduced by content blocking.

We selected 50 live Web sites to serve as test cases, pulled from
Web compatibility issue logs reported to the EasyList filter list
project.9 Each selected site included at least one script that was
both labeled as harmful by EasyList and explicitly allowed to load
because of an exception rule introduced by EasyList developers
to fix the corresponding compatibility issue. We used SugarCoat
to generate rewritten, privacy-preserving versions of these Web-
compatibility-critical scripts, and produced three configurations
for each site: “default”, “blocked”, and “rewritten”, as described in
Section 4.1.2.

To assess the compatibility impact of replacing these critical
scripts with SugarCoat-rewritten versions, we recruited six human
evaluators with no financial or professional relationship to the au-
thors. Each Web site was tested independently by two of the six
evaluators. We instructed each evaluator to interact with the site
for one minute each time, under three test conditions. First, the
evaluator visited the site in the “default”, known-working config-
uration, to learn what functionality the site provides. Next, the
evaluator was presented with either the “blocked” configuration
(expected to show compatibility breakage, as privacy-harming but
web-compatibility-critical scripts were blocked), or the “rewritten”
configuration (expected to behave similarly to the default configu-
ration from a compatibility perspective). Finally, the evaluator was
presented with the remaining unseen configuration. The order in
which the blocked and rewritten configurations were presented to
the evaluator was randomized, with a 50% chance of the evaluator
seeing either configuration first; evaluators were never told if they
were seeing the blocked or the rewritten configuration.

For each of the blocked and rewritten configurations, the evalu-
ator rated the Web site’s functionality on a scale of 1–3:
(1) There was no perceptible difference between the configuration

presented and the default, control configuration.
(2) The browsing experience was altered, but the evaluator was

still able to complete the same tasks as during the control visit.
(3) The evaluator was not able to complete the same tasks as during

the control visit.
Figure 15 summarizes our results. The human evaluators reliably

reported their experience of the testWeb sites as broken or degraded
in some way when the target scripts were blocked, ranging from
missing content to non-functional user interface elements to a
total failure to load most of the page, with a mean rating of 2.86.

9The EasyList project notes fixes to compatibility issues by prefacing those git commit
messages with “P:”, see https://github.com/easylist/easylist/commits.

https://github.com/easylist/easylist/commits


SugarCoat CCS ’21, November 14–19, 2021, Seoul, South Korea

Privacy-affecting behaviors Case I Case II

Storage < 0.001 < 0.001
Network < 0.001 < 0.001

Core functionality behaviors Case I Case II

DOM operations 0.016 0.732
Event registration 0.007 0.517

Figure 16: 𝑝-scores from our two-sample K-S tests, comparing the distributions of:
(I) Pages with privacy-harming but compatibility-critical scripts loaded vs. pages with
such scripts blocked. (II) Pages with privacy-harming but compatibility-critical scripts
loaded vs. pages with such scripts rewritten by SugarCoat.

When target scripts were instead redirected to SugarCoat-generated
resource replacements, evaluators reliably reported their experience
as normal, with a mean score of 1.03.10

Our results support several conclusions. First, filter lists accu-
rately identify privacy-harming but compatibility-critical scripts.
Second, it’s often unambiguous when a Web site is broken, given
the high level of agreement between our evaluators. And third, us-
ing SugarCoat to rewrite critical scripts, instead of blocking them,
leads to significantly less Web compatibility breakage.

We lastly note that we did not collect or process private data or
identifiable information from our human evaluators. And since the
testing does not qualify as human subject research, we did not seek
IRB review. This is consistent with prior work using roughly the
same evaluation set-up [20, 22, 35].

4.3.2 Quantitative Compatibility Evaluation. We conducted a quan-
titative evaluation of SugarCoat’s compatibility impact, by compar-
ing the aggregate behavior of “blocked” pages to “rewritten” pages.
Using the PageGraph data collected from the “default”, “blocked”,
and “rewritten” versions of each page, we counted the numbers of
calls to different Web APIs, per page, for each measurement con-
dition. We clustered the instrumented APIs into a smaller number
of purpose categories, to better capture developer goals distinct
from implementation choices. One category, “DOM operations”,
includes APIs involved in creating, inserting, removing, and updat-
ing DOM nodes, representing the actions scripts take to build or
modify a page’s structure. Another category, “event registrations”,
groups APIs used to attach and manipulate event listeners (e.g.,
addEventListener, .on[event]), representing page interactivity.

We applied the two-sample Kolmogorov-Smirnov (K-S) test to
determine the likelihood that differences observed in API call counts
under different measurement conditions reflect different underlying
distributions, and so different underlying page behavior.11 Figure 16
presents the results of these K-S tests. We find that blocking privacy-
harming-but-necessary scripts has a significant (𝑝 < .05) effect on
both privacy-relevant and non-privacy-relevant page behaviors. We
also find that applying SugarCoat-generated resource replacements
(instead of blocking) maintains the significant (𝑝 < .05) effect on
privacy-relevant page behaviors, but no longer has a significant
effect on core functionality page behaviors.

10In three instances, evaluators rated the SugarCoat condition as a 2 rather than a
1; however, in each of these cases, we observed that the justification given for these
ratings was inaccurate (e.g., mistakenly identifying a UI element as missing). To avoid
biasing the study, we did not “correct” these ratings. For each test Web site on which
this occurred, the other reviewer assigned to the site rated the SugarCoat version as a
1.
11We opted for K-S testing over Student’s T-test because our data is not normally
distributed, as determined by standard normality testing.

The results of this quantitative evaluation support two conclu-
sions. First, blocking privacy-relevant but compatibility-critical
scripts significantly reduces the number of both privacy-relevant
(e.g., storage, network) and core-functionality (e.g., document ma-
nipulation, event registration) operations on a page. Second, using
SugarCoat to rewrite these scripts maintains the statistically signif-
icant reduction in privacy-relevant behaviors, but no longer causes
a statistically significant reduction in non-privacy-related page be-
haviors. This supports the finding of the manual evaluation that
using SugarCoat to rewrite scripts eliminates compatibility issues.

4.4 Performance

Finally, we describe the performance characteristics of SugarCoat—
both the performance of the resource replacements that SugarCoat
generates, and the performance of the SugarCoat pipeline itself.

4.4.1 Resource Replacement Performance. We measured the perfor-
mance overhead of SugarCoat-generated resource replacements
used with a “stock”, unmodified Chromium-based browser with pre-
existing support for content blocking and resource replacement. We
visited each page in the 902-page evaluation dataset with “default”,
“blocked”, and “rewritten” filter rule sets loaded into the browser.We
used APIs provided by Puppeteer to extract standard page perfor-
mance metrics for these visits, covering JavaScript memory usage
and the timing of key page-load events.

Figure 17 summarizes our results. We observe an average 9% file
size increase for the source code of SugarCoat-rewritten scripts
compared with their original versions. Part of this comes from the
insertion of mock API implementations at the beginning of each
rewritten script. This mock code is only inserted once for each
intercepted API the script uses, so it represents a bigger relative
size increase for smaller scripts than larger ones, and scripts which
use a wider variety of privacy-relevant APIs will see more mock
code added by the rewriter. The rest of the size increase comes from
the insertion of code to intercept and redirect calls that the script
makes to the mocked Web APIs. As described in Section 3.3.1, this
insertion happens at the JavaScript function level, so multiple calls
to an API within a given function don’t require any more added
code than a single API call. However, the more functions that access
mocked APIs, the more interception code is added by the rewriter.

We noticed a small (1-9%) improvement in standardmetrics when
pages were loaded with filter lists configured to redirect target
scripts to SugarCoat-generated resource replacements (the “rewrit-
ten” condition) compared with filter lists configured to except the
target scripts and allow the original versions to load (the “default”
condition). Used and total JavaScript heap memory reported by V8
dropped by a megabyte on average. Moreover, key events which
mark different points in the browser’s page loading and rendering
process, commonly used to benchmark user-perceptible Web page
performance [14, 15], completed an average of 22–72ms earlier. This
is not surprising: mocked APIs, which generate fake results, do less
work than the browser-native implementations, outweighing the
overhead of redirecting API calls to those mocks. For example, the
network API mocks return immediately instead of invoking the
network stack; the storage API mocks skip writing data to disk.



CCS ’21, November 14–19, 2021, Seoul, South Korea Michael Smith, Pete Snyder, Benjamin Livshits, and Deian Stefan

Filter Rule Set Default Blocked Rewritten

Target Script Code Size 158 kB (𝜎 = 230 kB) — 172 kB (𝜎 = 231 kB)

JavaScript Memory Usage (Entire Page)
Heap Used Size 11 MB (𝜎 = 8 MB) 9 MB (𝜎 = 7 MB) 10 MB (𝜎 = 8 MB)
Heap Total Size 14 MB (𝜎 = 13 MB) 12 MB (𝜎 = 12 MB) 13 MB (𝜎 = 13 MB)

Performance Event Timing (Entire Page)
DOM Content Loaded 1,607 ms (𝜎 = 995 ms) 1,431 ms (𝜎 = 928 ms) 1,573 ms (𝜎 = 1,019 ms)
DOM Interactive 1,549 ms (𝜎 = 1,004 ms) 1,398 ms (𝜎 = 930 ms) 1,527 ms (𝜎 = 1,023 ms)
Load Event 3,063 ms (𝜎 = 2,410 ms) 2,560 ms (𝜎 = 2,330 ms) 3,025 ms (𝜎 = 2,470 ms)
First Paint 1,026 ms (𝜎 = 709 ms) 842 ms (𝜎 = 674 ms) 960 ms (𝜎 = 838 ms)
First Contentful Paint 1,101 ms (𝜎 = 710 ms) 963 ms (𝜎 = 801 ms) 1,029 ms (𝜎 = 852 ms)

Figure 17:Measurements comparing page performance in a typical browser equipped with each of three filter rule sets: “default”, with target scripts excepted; “blocked”, with
filter rules altered to block the target scripts entirely; and “rewritten”, with filter rules inserted to redirect the target scripts to SugarCoat-generated resource replacements. All
measurements are medians, taken over the 902-page dataset described in Section 4.1.

Time Median 𝜎

Behavioral Profiling (per page) 4.631 ms 11.731 ms
JavaScript Parsing (per script) 34.924 ms 37.068 ms
AST Rewriting (per script) 42.024 ms 32.659 ms
JavaScript Generation (per script) 16.156 ms 24.288 ms

Figure 18: Pipeline benchmarking data gathered from running SugarCoat on a 64-bit,
8-core, Intel i7-6700K system running Ubuntu Linux 18.04.

Blocking the target scripts would further improved page perfor-
mance (10–18%). However, the scripts we targeted for this evalu-
ation are specifically excepted from blocking by filter list authors
to maintain compatibility with the Web pages that embed them.
Our qualitative and quantitative compatibility evaluations (§4.3)
support this: though blocking these scripts may make the pages run
faster, one can expect key functionality to be missing or broken.

4.4.2 Pipeline Performance. To evaluate the performance of the
SugarCoat pipeline itself, we benchmarked it on our 902-page eval-
uation dataset. Tracing API call sites, parsing the input JavaScript,
rewriting the ASTs, and generating final resource replacement
JavaScript all take milliseconds to complete. We emphasize that
these steps are done “offline”, by privacy developers generating re-
source replacements for later use by end users in content blocking
tools. As such, our only concern is whether using SugarCoat to
generate replacements is computationally prohibitive. As Figure 18
shows, this is not the case, and resource replacements can quickly
be generated by even a modestly powerful machine.

5 DISCUSSION AND LIMITATIONS

The previous sections present the design of SugarCoat, and how we
evaluated the privacy, compatibility, and performance characteris-
tics of the system. In this section we discuss some of the limitations
of SugarCoat, how SugarCoat might be deployed in practice, and
possible future directions for this work.

5.1 Limitations

5.1.1 Compatability Measurements. Because compatibility is a sub-
jective evaluation, it’s difficult to measure compatibility with the
techniques common to privacy research. Section 4.3 provides two
very different attempts to measure compatibility, but any attempt
to quantify a subjective measure will be incomplete. We believe

developing better techniques for understanding how privacy inter-
ventions affect desirable application behaviors (both on the Web
and otherwise) is an area deserving of future work.

5.1.2 Ground Truth. Our evaluation assumes that filter lists ac-
curately distinguish privacy-harming resources from benign re-
sources. We also assume that filter lists accurately identify cases
where filter rules breakWeb sites, and that filter list authors address
such situations with exception rules. While we know that these as-
sumptions are not always correct, we believe this generalization is
useful. First, this assumption is inline with much existing research
that treats filter lists as an imperfect-but-best-possible source of
ground truth (e.g., [4, 5, 16, 22]). And second, the fact that many
millions of people use these lists suggests, even if only anecdotally,
that the lists are accurate enough to be useful. Nevertheless, we
note this assumption as a limitation, and suggest establishing high
quality ground truth here as a possible area for future work.

5.1.3 Rewriting Limitations. While we believe SugarCoat to be an
effective way to solve compatibility issues that arise from content
blocking, we note some limitations in our approach. Most signif-
icantly, SugarCoat relies on dynamic analysis when tracing (or
concretizing) API calls, and so carries with it all the limitations of
dynamic analysis systems, including only being able to understand
code paths that execute during observation. This limitation can be
partially addressed by exercising more code paths (e.g., through
human interaction, fuzzing, or guided discovery). SugarCoat can
integrate data from multiple observation sessions; our implementa-
tion can even map data gathered from (future) observation sessions
of the rewritten scripts themselves back to locations in the original
script code. However, these techniques only lessen the limitation:
they do not fundamentally solve it.

Second, our approach to rewriting scripts is to identify the code
locations that access privacy-affecting APIs (or call into library code
that does the same), inject mock implementations of the relevant
APIs before the call sites, and then remove the mock API imple-
mentations when control flow leaves the scope. While in practice
this approach keeps the API modifications local to the call site,
there are scenarios where side effects could leak into other parts
of the application. For example, if a target script calls an “async”
library function that uses a privacy-affecting API, any other code
the executes after the target script calls the function but before



SugarCoat CCS ’21, November 14–19, 2021, Seoul, South Korea

the promise resolves will also see the mock API implementation,
regardless of its location in the application. In practice, we did not
find any instances where this had a noticeable impact (partially
because the async methods in our mock APIs resolve immediately,
further reducing the possible timing window). We nevertheless
note the trade-off and limitation for completeness, one which we
may address in a future version of SugarCoat.

Last, applying SugarCoat on a true Web scale would require dra-
matically more on-device storage than is typically used by content
blocking tools. We discuss this in the Section 5.3.

5.1.4 Adversarial Environments. SugarCoat is designed to improve
filter list content blocking, and adopts the same attack model as
all filter list blocking. Determined attackers could circumvent the
tool’s protections, but in practice the cost of circumvention is high
enough to make circumvention relatively uncommon, and so make
the defense useful in practice, even if not fundamentally robust.
This attack model is common to most, if not all, tools that make
trust determinations based on URLs. Attackers wishing to evade
SugarCoat’s protections would do so using the same techniques
they would use to evade existing filter list tools (e.g., changing the
resource’s URL). Additionally, SugarCoat provides powerful new
capabilities to the defender, without adding new circumvention
capabilities to the attacker. In short, we intend SugarCoat to ad-
vance the state-of-the-art in practical privacy tools, and to deliver
real-world privacy improvements, even if those protections are
circumventable by a particularly determined adversaries.

We also note briefly some of the constraints that make circum-
vention of filter lists (and so SugarCoat too) costly to attackers. For
example, attackers (i.e., trackers) want to make their services easy
for Web sites to include, so that non-expert developers can include
the tracking scripts. This need for easy deployment reduces the
countermeasures available to attackers. Similarly, attackers typi-
cally do not control the Web sites fetching their code, which makes
it costly and difficult for attackers to update URLs once they’ve
been identified by a filter list. There are many other such practical-
though-not-fundamental constraints on attackers; we intend these
as illustrative examples for why the attacker model used by Sugar-
Coat and other filter list tools is, in practice, more favoring of the
defender than it might first appear.

5.2 Mock Implementation
For this work, we instrumented the Web APIs listed in Figure 8. We
selected these APIs for two reasons. First, because they are privacy-
affecting APIs commonly used by tracking scripts to harm privacy.
Each of the selected APIs can be used to either store or transmit
unique identifiers. Second, we selected these APIs because they
represent a range of different interface patterns used in Web APIs
(e.g., text parsing for document.cookie, synchronous data access
for localStorage, and asynchronous access for XHLHttpRequest),
and so demonstrate SugarCoat’s flexibility and broad applicability.

SugarCoat’s design is general, and could be applied to any prop-
erties, methods, or structures in the Web APIs with only small-to-
moderate additional development effort. Additional APIs can be
instrumented with a one-time cost, and so could be crowd-sourced,
upstreamed, and shared. Instrumenting additional APIs does not
affect the system’s algorithmic complexity.

SugarCoat was intentionally designed to allow developers to in-
strument new APIs without needing to be familiar with Chromium,
Blink, V8 or SugarCoat internals. This is similar to “plugin” or
“module” systems in many large, complex projects, allowing devel-
opers to extend the system through simple, well-defined interfaces.
Instrumenting a new API in SugarCoat requires the following steps:
(1) Implement in JavaScript a mock version of the target Web API

property or method. Mocks of manyWeb APIs already exist, and
can be used with small to no modifications (see Appendix B).

(2) Indicate to PageGraph the new JavaScript properties or inter-
faces being instrumented, by adding a TrackInPageGraph an-
notation in the relevant WebIDL files (see Appendix C).

(3) Bind the new implementation to the method annotated in We-
bIDL with a small JSON file (instructing SugarCoat that, e.g.,
window.fetch should be redirected to the mock in fetch.js).

5.3 Deployment Scenarios
Content blocking tools that use resource replacements store the
entire catalogue of scripts on the client. This is not currently a
significant constraint; resource replacements are still rarely used
(on the scale of dozens), for reasons explained in Section 2.2.

SugarCoat is designed to generate replacements on a Web scale,
though, which will require alternative deployment strategies on
resource-constrained devices—devices without sufficient storage
to carry a complete catalogue of thousands of alternative scripts.
To maximize the benefits of SugarCoat on resource-constrained
devices, we need to consider alternative deployment strategies.

Resource-constrained devices may choose to still pre-fetch re-
source replacements, but to only do so for some threshold of popular
Web sites. Clients could fetch resource replacements as needed from
a central repository, and use a private information retrieval schemes
to avoid leaking browsing habits. Alternatively, replacement scripts
could be distributed as compact patches to the original scripts. Each
of these strategies allow the client to trade coverage, performance,
and privacy against each other, according to the capabilities of the
device.

5.4 Other Applications
In this work we’ve focused on using SugarCoat to generate resource
replacements to improve the Web compatibility of content blocking
tools. Our techniques, however, could be used server-side, or by
application developers. For example, with few exceptions, the Web
platform does not offer a way to include a script in a page while
restricting its capabilities. A Web site author may wish to include
some third-party library, but prevent it from calling the network.
For many authors, auditing, understanding, and rewriting heavily
minified or obfuscated JavaScript is prohibitive. SugarCoat could be
used by such authors to easily restrict the capabilities of included
scripts (keeping in mind the caveats and limitations discussed in
Section 5.1).

6 RELATEDWORK
This work contributes to and builds on a large amount of existing
work in Web privacy, filter lists (and how advertisers and trackers
respond to being included on filter lists), and efforts to constrain,
analyze, and evaluate Web applications. In this section we discuss
how our work relates to existing research in these areas.



CCS ’21, November 14–19, 2021, Seoul, South Korea Michael Smith, Pete Snyder, Benjamin Livshits, and Deian Stefan

Filter Lists. This work is closely related to a large field of research
into the benefits from, effectiveness of, and reactions to filter list
based content blocking. Work such as Merzdovnik et al. [26] found
that filter list based content blocking tools often result in a net
reduction in CPU use, even when accounting for the overhead of
the tools themselves. Gervais et al. [12] found that similar content
blockers reduce communication with third-parties by as much as
40% in typical browsing scenarios. Several works have shown that
trackers and advertisers often try to circumvent or deter filter list
use [21, 30, 41, 44], though Iqbal et al. [21] found that filter lists
are often effective at defeating these countermeasures (e.g., anti-
adblock scripts). Storey et al. [39] prove a model of tracker-vs.-
blocker interactions and conclude that blockers are likely to prevail
in the cat-and-mouse game.

Other work has found that, though useful, filter lists contain
significant inefficiencies. Snyder et al. [36] found that most rules in
the most popular lists provide no benefit. Similarly, Alrizah et al. [3]
found popular lists contain non-trivial numbers of false positives.

Finally, filter lists have been used to establish ground truth in the
training and evaluation of many other content blocking strategies.
Chen et al. [5] used filter lists as ground truth to detect trackers
by behavioral signatures, and Iqbal et al. [22] used lists to train a
classifier-based blocker. Other works have used filter lists to train
systems that block ads based on their visual appearance [1, 32, 39].

Platform-Wide Web Privacy Improvements. Filter lists improve
Web privacy by deploying defenses against known bad actors. A dif-
ferent line of work aims to improve Web privacy through platform-
wide changes and interventions.

For example, much work has focused on changing browsers’
storage polices to improve Web privacy. Roesner et al. [34] early on
documented the benefits of blocking third-party storage altogether.
More recently, some browsers have moved to a hybrid strategy:
blocking some forms of third-party storage completely (i.e., cookies),
and isolating other kinds of third-party storage with “partitioning”
strategies. For example, Apple’s Safari browser limits cross-site
tracking by partitioning third-party storage per first-party, per
browser-session 12. The Tor Browser Bundle and recent versions
of Firefox implement similar partitioning strategies 13. Jueckstock
et al. [23] recently demonstrated and evaluated a variant strategy,
partitioning third-party storage per first-party, per site-session, to
further limit certain forms of cross-session tracking.

A related vein of work focuses on platform-wide (instead of
actor-specific) defenses against browser fingerprinting. Nikiforakis
et al. [29] proposed a system for preventing fingerprinting based on
randomizing the values of some Web APIs. Laperdrix et al. [24] im-
proved the Privaricator proposal by using steganographic-like tech-
niques to minimize the impact of randomization on user-benefiting
functionality. Olejnik et al. [31] found that feature removal can
be an effective privacy-preserving technique, for features that are
rarely used and have a high potential for abuse.

Web Compatibility. Our work also draws from, and relates to, a
large body of work investigating the compatibility impact of privacy
tools. Mesbah et al. [27] and Choudhary [7] both proposed systems
for detecting whether a page works correctly when executing in
12https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
13https://wiki.mozilla.org/Security/FirstPartyIsolation

different browser engines. Deursen et al. [40] designed a system for
detecting broken applications from differences in traversable links.

Other works have used manual evaluations of sampled Web sites
to determine whether a page is working correctly. Snyder et al. [35]
used repeated, double-blind manual evaluations of Web sites to
determine whether a given Web API was necessary for a page to
function correctly. Iqbal et al. [20] used manual evaluations of Web
pages to determine whether anti-fingerprinting protections broke
pages, Jueckstock et al. [23] used a similar technique for measuring
the impact of different browser storage polices on compatibility. Yu
et al. [43] used a novel, indirect method of detecting compatibility
issues, by measuring how often users disabled their privacy tools.

Language-based Confinement Techniques. Dynamic information
flow control systems like FlowFox [9] and JSFlow [18] can be used
to prevent privacy-sensitive data flow leaks. Both FlowFox and
JSFlow cannot easily be deployed: one requires multiple runs of the
browser; the other imposes roughly 100% overhead. Other dynamic
enforcement systems for JavaScript (e.g., ConScript [28]) require
heavy modifications to browsers. On the opposite side of the spec-
trum, static information flow and static analysis techniques don’t
translate well to the highly dynamic JavaScript language.

Still, our work is similar in spirit to Chugh et al.’s [8], which
performs static analysis to make dynamic information flow control
practical, but we instead use dynamic analysis to inform a static
pass that instruments code with guards. Our instrumentation is
similar to work on program repair (e.g., [33]), program partitioning
(e.g., SIF [6]), and policy weaving (e.g., [17]).

Systems like BFlow [42] and COWL [38] help developers write
applications that do not leak sensitive data, but require significant
modifications to applications. Unfortunately, we can’t expect the
developers of ad and tracking scripts to do this work for us.

7 CONCLUSION
Content blocking is an important way of protecting privacy, per-
formance, and user agency on the Web, so much so that some
government security agencies recommend content blocking tools
to government employees to prevent some forms of attack. Un-
fortunately, Web sites increasingly put content blocking tools in
no-win situations: continue protecting user privacy but “break” an
increasingly large number of sites, or maintain compatibility by
allowing the privacy harm.

We present SugarCoat, an automated, practical system that can
shift the state of the Web back in favor of content blocking tools—
and in turn, back in favor of users. SugarCoat provides a solution
to these no-win situations: maintain privacy and compatibility
through the programmatic generation of privacy-preserving re-
source replacements. Our tool is intended for real-world use, and
is designed to be compatible with existing popular content block-
ing tools. SugarCoat is currently being integrated into the Brave
browser, and we are actively working with the maintainers of pop-
ular content blocking tools so they can also enhance the privacy of
their users’ browsing.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherdDaniel Dubois.
This work was supported by the NSF under grant number CCF-
1918573, by a gift from Brave Software, and by an NSF Fellowship.

https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://wiki.mozilla.org/Security/FirstPartyIsolation


SugarCoat CCS ’21, November 14–19, 2021, Seoul, South Korea

REFERENCES

[1] Zainul Abi Din, Panagiotis Tigas, Samuel T King, and Benjamin Livshits. 2020.
PERCIVAL: Making in-browser perceptual ad blocking practical with deep learn-
ing. In USENIX Annual Technical Conference (USENIX ATC).

[2] AdGuard. 2021. AdGuard. https://adguard.com/.
[3] Mshabab Alrizah, Sencun Zhu, Xinyu Xing, and Gang Wang. 2019. Errors,

Misunderstandings, and Attacks: Analyzing the Crowdsourcing Process of Ad-
blocking Systems. (2019).

[4] Sruti Bhagavatula, Christopher Dunn, Chris Kanich, Minaxi Gupta, and Brian
Ziebart. 2014. Leveraging Machine Learning to Improve Unwanted Resource
Filtering. In ACM Workshop on Artificial Intelligence and Security.

[5] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros Kapravelos. 2021. Detect-
ing Filter List Evasion With Event-Loop-Turn Granularity JavaScript Signatures.
In Proceedings of the IEEE Symposium on Security and Privacy (May 2021).

[6] Stephen Chong, Krishnaprasad Vikram, Andrew C Myers, et al. 2007. SIF: En-
forcing Confidentiality and Integrity in Web Applications.. In USENIX Security
Symposium. 1–16.

[7] Shauvik Roy Choudhary. 2011. Detecting cross-browser issues in web applica-
tions. In 2011 33rd International Conference on Software Engineering (ICSE). IEEE,
1146–1148.

[8] Ravi Chugh, Jeffrey A Meister, Ranjit Jhala, and Sorin Lerner. 2009. Staged infor-
mation flow for JavaScript. In Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 50–62.

[9] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
2012. FlowFox: a web browser with flexible and precise information flow control.
In Proceedings of the 2012 ACM conference on Computer and communications
security. 748–759.

[10] Famlam Fanboy, MonztA and Khrin. 2021. EasyList. https://easylist.to/easylist/
easylist.txt.

[11] Famlam Fanboy, MonztA and Khrin. 2021. EasyPrivacy. https://easylist.to/
easylist/easyprivacy.txt.

[12] Arthur Gervais, Alexandros Filios, Vincent Lenders, and Srdjan Capkun. 2017.
Quantifying web adblocker privacy. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10493 LNCS (2017), 21–42. https://doi.org/10.1007/978-3-319-66399-9_2

[13] Google. 2020. Tools for Web Developers: Puppeteer. https://developers.google.
com/web/tools/puppeteer/.

[14] Google. 2021. Chrome User Experience Report. https://developers.google.com/
web/tools/chrome-user-experience-report.

[15] Ilya Grigorik. 2019. Measuring the Critical Rendering Path. https:
//developers.google.com/web/fundamentals/performance/critical-rendering-
path/measure-crp.

[16] David Gugelmann, Markus Happe, Bernhard Ager, and Vincent Lenders. 2015.
An Automated Approach for Complementing Ad Blockers’ Blacklists. In Privacy
Enhancing Technologies Symposium (PETS).

[17] William R Harris, Somesh Jha, and Thomas Reps. 2012. Secure programming via
visibly pushdown safety games. In International Conference on Computer Aided
Verification. Springer, 581–598.

[18] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow:
Tracking information flow in JavaScript and its APIs. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing. 1663–1671.

[19] Raymond Hill. 2021. uBlock Origin. https://github.com/gorhill/uBlock.
[20] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2020. Fingerprinting the

Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors. arXiv
preprint arXiv:2008.04480 (2020).

[21] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. 2017. The Ad Wars: Retro-
spective Measurement and Analysis of Anti-Adblock Filter Lists. ACM SIG-
COMM Conference on Internet Measurement Conference (IMC) 13 (2017). https:
//doi.org/10.1145/3131365.3131387

[22] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and
Zubair Shafiq. 2020. Adgraph: A graph-based approach to ad and tracker blocking.
In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 763–776.

[23] Jordan Jueckstock, Peter Snyder, Shaown Sarker, Alexandros Kapravelos, and
Benjamin Livshits. 2020. There’s No Trick, Its Just a Simple Trick: AWeb-Compat
and Privacy Improving Approach to Third-party Web Storage. arXiv preprint
arXiv:2011.01267 (2020).

[24] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. 2017. FPRandom: Randomiz-
ing core browser objects to break advanced device fingerprinting techniques. In
International Symposium on Engineering Secure Software and Systems. Springer,
97–114.

[25] M Malloy, M McNamara, A Cahn, and P Barford. 2016. Ad blockers: Global
prevalence and impact. Imc’16 14-16-Nove (2016), 119–125. https://doi.org/10.
1145/2987443.2987460

[26] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar Weippl. 2017. Block Me if You Can: A
Large-Scale Study of Tracker-Blocking Tools. Proceedings - 2nd IEEE European
Symposium on Security and Privacy, EuroS and P 2017 (2017), 319–333. https:

//doi.org/10.1109/EuroSP.2017.26
[27] Ali Mesbah and Mukul R Prasad. 2011. Automated cross-browser compatibility

testing. In Proceedings of the 33rd International Conference on Software Engineering.
561–570.

[28] Leo A Meyerovich and Benjamin Livshits. 2010. ConScript: Specifying and
enforcing fine-grained security policies for Javascript in the browser. In 2010
IEEE Symposium on Security and Privacy. IEEE, 481–496.

[29] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. 2015. Privaricator: De-
ceiving fingerprinters with little white lies. In Proceedings of the 24th International
Conference on World Wide Web. 820–830.

[30] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-Rodriguez,
Marjan Falahrastegar, Julia E. Powles, Emiliano De Cristofaro, Hamed Haddadi,
and Steven J. Murdoch. 2016. Ad-Blocking and Counter Blocking: A Slice of the
Arms Race. CoRR abs/1605.05077 (2016). arXiv:1605.05077 http://arxiv.org/abs/
1605.05077

[31] Łukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. 2015. The
leaking battery. In Data Privacy Management, and Security Assurance. Springer,
254–263.

[32] Adblock Plus. 2018. Sentinel - the artificial intelligence ad detector. https:
//adblock.ai/.

[33] Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis Hance, and
Armando Solar-Lezama. 2020. Liquid information flow control. Proceedings of
the ACM on Programming Languages 4, ICFP (2020), 1–30.

[34] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. 2012. Detecting and
defending against third-party tracking on the web. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

[35] Peter Snyder, Cynthia Taylor, and Chris Kanich. 2017. Most websites don’t need
to vibrate: A cost-benefit approach to improving browser security. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
179–194.

[36] Peter Snyder, Antoine Vastel, and Ben Livshits. 2020. Who Filters the Filters: Un-
derstanding the Growth, Usefulness and Efficiency of Crowdsourced Ad Blocking.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 4, 2
(2020), 1–24.

[37] Brave Software. 2020. PageGraph. https://github.com/brave/brave-browser/wiki/
PageGraph.

[38] Deian Stefan, Edward Z Yang, Petr Marchenko, Alejandro Russo, Dave Herman,
Brad Karp, and David Mazières. 2014. Protecting Users by Confining JavaScript
with COWL. In USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI).

[39] Grant Storey, Dillon Reisman, Jonathan Mayer, and Arvind Narayanan. 2017.
The future of ad blocking: An analytical framework and new techniques. arXiv
preprint arXiv:1705.08568 (2017).

[40] Arie Van Deursen, Ali Mesbah, and Alex Nederlof. 2015. Crawl-based analysis of
web applications: Prospects and challenges. Science of computer programming 97
(2015), 173–180.

[41] WeihangWang, Yunhui Zheng, Xinyu Xing, Yonghwi Kwon, Xiangyu Zhang, and
Patrick Eugster. 2016. WebRanz: web page randomization for better advertisement
delivery and web-bot prevention. Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering - FSE 2016 (2016),
205–216. https://doi.org/10.1145/2950290.2950352

[42] Alexander Yip, Neha Narula, Maxwell Krohn, and Robert Morris. 2009. Privacy-
preserving browser-side scripting with BFlow. In Proceedings of the 4th ACM
European conference on Computer systems. 233–246.

[43] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M Pujol. 2016. Tracking
the trackers. In Proceedings of the 25th International Conference on World Wide
Web. 121–132.

[44] Shitong Zhu, Xunchao Hu, Zhiyun Qian, Zubair Shafiq, and Heng Yin. 2018.
Measuring and disrupting anti-adblockers using differential execution analysis.
In The Network and Distributed System Security Symposium (NDSS).

A REWRITING CHALLENGES
Our rewriting pass takes care to handle special cases in the JavaScript
language. When we wrap a scope with entry and exit guards, we
place its code inside a try block and the exit guards inside an at-
tached finally clause, as illustrated by Figure 10, to ensure that
the exit guards still run if the wrapped code throws an exception.
If the scope is the top-level script scope, we must ensure that any
top-level declarations we move inside the try block still propagate
out to the global scope, so that other scripts may access them as
they would normally.

Variables declared with var are automatically hoisted through
block scopes in JavaScript, so they require no special handling:

https://adguard.com/
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://easylist.to/easylist/easyprivacy.txt
https://doi.org/10.1007/978-3-319-66399-9_2
https://developers.google.com/web/tools/puppeteer/
https://developers.google.com/web/tools/puppeteer/
https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/tools/chrome-user-experience-report
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/measure-crp
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/measure-crp
https://developers.google.com/web/fundamentals/performance/critical-rendering-path/measure-crp
https://github.com/gorhill/uBlock
https://doi.org/10.1145/3131365.3131387
https://doi.org/10.1145/3131365.3131387
https://doi.org/10.1145/2987443.2987460
https://doi.org/10.1145/2987443.2987460
https://doi.org/10.1109/EuroSP.2017.26
https://doi.org/10.1109/EuroSP.2017.26
https://arxiv.org/abs/1605.05077
http://arxiv.org/abs/1605.05077
http://arxiv.org/abs/1605.05077
https://adblock.ai/
https://adblock.ai/
https://github.com/brave/brave-browser/wiki/PageGraph
https://github.com/brave/brave-browser/wiki/PageGraph
https://doi.org/10.1145/2950290.2950352


CCS ’21, November 14–19, 2021, Seoul, South Korea Michael Smith, Pete Snyder, Benjamin Livshits, and Deian Stefan

1 try {
2 var foo = 'bar';
3 } finally {}
4 console.log(foo); // 'bar'

Variables declared with let and const, however, are block-scoped:

1 try {
2 let foo = 'baz';
3 const bar = 'quux';
4 } finally {}
5 console.log(foo , bar); // ReferenceError

SugarCoat manually hoists these to top-level let declarations:

1 let foo , bar;
2 try {
3 foo = 'baz';
4 bar = 'quux';
5 } finally {}
6 console.log(foo , bar); // 'baz quux'

Function declarations in strict mode are also block-scoped:

1 'use strict ';
2 try {
3 function foo() {
4 console.log('bar');
5 }
6 } finally {}
7 foo(); // ReferenceError

SugarCoat manually hoists these to top-level var declarations, and
preserves function-declaration-order independence by moving all
function declarations to the start of the wrapped code:

1 'use strict ';
2 var foo;
3 try {
4 foo = function foo () {
5 console.log('bar');
6 };
7 } finally {}
8 foo(); // 'bar'

Finally, class declarations are block-scoped:

1 try {
2 class Foo {
3 constructor () {
4 console.log('bar');
5 }
6 }
7 } finally {}
8 new Foo(); // ReferenceError

SugarCoat hoists these to top-level let declarations:

1 let Foo;
2 try {
3 Foo = class Foo {
4 constructor () {
5 console.log('bar');
6 }
7 };
8 } finally {}
9 new Foo(); // 'bar'

B EXAMPLE MOCK API
For each API that should be intercepted, the privacy developer sup-
plies a mock implementation, written in JavaScript, which emulates
its expected behavior in a compatible but privacy-preserving way.
Below we give an example of a mock Fetch API.

1 const fetch = async (url , init = null) =>
2 { throw new TypeError('Failed to fetch'); };
3 exports.fetch = {
4 value: fetch , writable: true ,
5 configurable: true , enumerable: true
6 };

C EXAMPLE ANNOTATEDWEBIDL
Our extended version of PageGraph can track accesses to arbi-
trary Web APIs. Tracking is enabled for a Web API by adding a
TrackInPageGraph annotation to the corresponding WebIDL code
that defines its interface. Below we give an example of annotated
WebIDL code from the IndexedDB API, with the added annotation
highlighted.
1 [
2 ImplementedAs=GlobalIndexedDB
3 ] partial interface Window {
4 [TrackInPageGraph]
5 readonly attribute IDBFactory indexedDB;
6 };



SugarCoat CCS ’21, November 14–19, 2021, Seoul, South Korea

SHEPHERDED REVISION UPDATES
Thanks for agreeing to be our shepherd! We’ve addressed the issues
highlighted by the meta-review as outlined below. We’ve high-
lighted significant segments of revised text in red.
▶ Section 5.4 and privacy tuning

We dropped the dangling reference to privacy tuning from
the section title.

▶ Add reference to Figure 4 in the text
We revised the opening paragraphs of Section 3 to refer
directly to Figure 4.

▶ Clarify the roles of scripts and who provides them
The step described in Section 3.1 does not require a list of
scripts as a separate input. Rather, the privacy developer
working with SugarCoat records PageGraph data for one
or more Web pages, and then marks a subset of the scripts
embedded on those pages as privacy-harming, providing
that set of target scripts as input to the step described in
Section 3.2. We revised the first paragraph of Section 3.1 as
well as the description of Figure 4 to clarify this point.

▶ Clarify what steps are online and what are offline in
Section 3
We added text to the end of the opening of Section 3 to
emphasize that all steps described—the entire SugarCoat

pipeline—are performed offline by privacy developers. This
process generates a set of resource replacements which can
then be deployed to end users.

▶ Be consistent when referring to the steps in Figure 4
We renamed Section 3.1, Section 3.2, and Section 3.3 to use
the same language as Figure 4, and revised the bullet-point
summary of steps in the opening of Section 3 to use this
language as well.

▶ Fix the template and floating elements
We corrected our implementation of the CCS template, fixing
the section headings, adding missing elements such as con-
cepts and the copyright declaration, and aligning all floating
elements to the top of the page.

▶ Use consistent terminology for referring to “sites”
We updated references to “sites” throughout the paper to
clarify whether the term refers to “call sites” or “Web sites”
(capitalizing Web to be consistent with our use of the term
“Web pages”).
▶ Proofread the paper, especially the new text

We made proofreading passes over the paper, fixing small
errors throughout, and addressed the list of typos from the
meta-review.


	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Motivating Example
	2.2 Current Options for Content Blocking
	2.3 Properties of an Ideal Solution

	3 SugarCoat Design
	3.1 Tracing Scripts with PageGraph
	3.2 Identifying Call Sites via Graph Analysis
	3.3 Analyzing and Rewriting JavaScript

	4 Evaluation
	4.1 Evaluation Dataset
	4.2 Privacy Evaluation
	4.3 Web Compatibility Evaluation
	4.4 Performance

	5 Discussion and Limitations
	5.1 Limitations
	5.2 Mock Implementation
	5.3 Deployment Scenarios
	5.4 Other Applications

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Rewriting Challenges
	B Example Mock API
	C Example Annotated WebIDL

