
Nebula: Efficient, Private and Accurate Histogram Estimation
Ali Shahin Shamsabadi

Brave Software

London, UK

ashahinshamsabadi@brave.com

Peter Snyder

Brave Software

San Fransisco, USA

psnyder@brave.com

Ralph Giles

Brave Software

Toronto, Canada

giles@thaumas.net

Aurélien Bellet

Inria

Montpellier, France

Université de Montpellier

Montpellier, France

aurelien.bellet@inria.fr

Hamed Haddadi

Brave Software

London, UK

Imperial College London

London, UK

h.haddadi@imperial.ac.uk

ABSTRACT
We present Nebula, a system for differentially private histogram

estimation on data distributed among clients. Nebula allows clients
to independently decide whether to participate in the system, and

locally encode their data so that an untrusted server only learns

data values whose multiplicity exceeds a predefined aggregation

threshold, with (𝜀, 𝛿) differential privacy guarantees. Compared

to existing systems, Nebula uniquely achieves: i) a strict upper

bound on client privacy leakage; ii) significantly higher utility than
standard local differential privacy systems; and iii) no requirement

for trusted third-parties, multi-party computation, or trusted hard-

ware. We provide a formal evaluation of Nebula’s privacy, utility
and efficiency guarantees, along with an empirical assessment on

three real-world datasets. On the United States Census dataset,

clients can submit their data in just 0.0036 seconds and 0.0016 MB

(efficient), under strong (𝜀 = 1, 𝛿 = 10
−8) differential privacy guar-

antees (private), enabling Nebula’s untrusted aggregation server

to estimate histograms with over 88% better utility than existing

local differential privacy deployments (accurate). Additionally, we
describe a variant that allows clients to submit multi-dimensional

data, with similar privacy, utility, and performance. Finally, we

provide an implementation of Nebula.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
Differential Privacy, Private Histogram, Secure Threshold Aggrega-

tion, Heavy Hitters, Distributed Data

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’25, October 13–17, 2025, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1525-9/2025/10. . . $15.00

https://doi.org/10.1145/3719027.3744789

ACM Reference Format:
Ali Shahin Shamsabadi, Peter Snyder, RalphGiles, Aurélien Bellet, andHamed

Haddadi. 2025. Nebula: Efficient, Private and Accurate Histogram Estima-

tion. In Proceedings of the 2025 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’25). ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3719027.3744789

1 INTRODUCTION
Aggregated user data allows software developers and service providers

to develop, deploy, and improve their systems in various use-cases

such as browser telemetry [28], financial crime [16], and digital

health [4]. However, large-scale collection of user data introduces

privacy risks, as client data may contain privacy-sensitive infor-

mation (e.g., client preferences/interests, transactions, and medical

diagnoses [10, 12, 19, 22, 26, 27, 29, 35]).

In this work, we focus on the problem of private distributed his-
togram estimation, where a central server aims to estimate the fre-

quencies of different data values distributed among a set of clients,

while providing privacy guarantees to the clients.

Several approaches to private distributed histogram estimation

have been proposed, either in published research or in deployed sys-

tems. One such technique is threshold-aggregation, where the server
is able to learn client values if and only if sufficiently many clients

contribute the exact same value [19, 29, 43]. Threshold-aggregation

has the benefit of providing a simple and intuitive privacy model,

but generally lacks robust, provable privacy guarantees, due to

using the deterministic notion of 𝐾-anonymity for protecting the

privacy of clients [36, 46].

A second type of approach to private distributed histogram esti-

mation relies on differential privacy (DP) [32, 33] to provide formal

privacy guarantees through statistical indistinguishability. A wide

range of DP-based systems for privacy-preserving data collection

have been proposed, all of which require implementers and deploy-

ers to make unappealing tradeoffs, even for state-of-the-art systems.

Local DP systems [1, 9, 55, 56] provide strong privacy guarantees

but generally poor utility, while central DP systems [32, 33, 58]

provide high utility but require prohibitive levels of trust by clients.

A third category of private distributed histogram estimation sys-

tems attempt to achieve both high utility and privacy, but do so by

introducing additional costs, relying for instance on computation-

ally expensive, novel cryptography [6, 10, 14, 24, 26, 34], (e.g., multi-

party computation, homomorphic encryption), and/or requiring

https://orcid.org/0009-0009-1093-0125
https://orcid.org/0000-0001-7880-2503
https://orcid.org/0009-0001-6794-7042
https://orcid.org/0000-0003-3440-1251
https://orcid.org/0000-0002-5895-8903
https://doi.org/10.1145/3719027.3744789
https://doi.org/10.1145/3719027.3744789

CCS ’25, October 13–17, 2025, Taipei, Taiwan Shahin Shamsabadi et al.

multiple rounds of heavy communication between participants [10],

among other concerns. These systems entail computational, band-

width and financial costs that make adoption difficult-to-impossible

for all but resource-rich organizations.

In this paper, we describe a novel system for the problem of

private distributed histogram estimation
1
that avoids the limitations

and trade-offs of existing approaches, achieving simultaneously

provable differential privacy guarantees, high utility, and practical

efficiency. Our system, called Nebula, is a novel combination of

the recent sample-and-threshold mechanism [26] with verifiable

client-side thresholding [29] to provide DP guarantees without the

use of trusted third parties. Nebula relies on two untrusted (non-

colluding) servers: a randomness server and an aggregation server,
and in contrast to existing state-of-the-art systems (e.g., [14]), no
communication between the two servers is required.

At a high level, each client participating in Nebula begins by

randomly deciding whether to contribute any data. Clients that

do decide to participate locally encode their value using a secret-

sharing scheme, which prevents the server from observing uncom-

mon values. This secret sharing process is very cheap, requiring

only a single round of oblivious communication with the untrusted

randomness server, which executes a verifiable oblivious pseudo-

random function over the client’s value. Participating clients then

contribute their secret share to the aggregation server over an

oblivious communication channel. The aggregation server then

combines all received shares to recover values which have been

contributed by a sufficient number of participants.

Nebula enforces formal differential privacy protection for all

clients through three steps: i) the uncertainty of any particular

client contributing any value; ii) blinding the aggregation server

to uncommon values through the secret-sharing mechanism (i.e.,

thresholding); and iii) having some clients contribute precisely

defined amounts of “dummy data” to obscure the distribution of

uncommon (i.e., unrevealed) values.

In summary, we make the following contributions to the problem

of private distributed histogram estimation:

(1) the design of a novel system for conducting privacy preserv-

ing data aggregation under DP guarantees that achieves all of

the following: i) high utility, particularly when compared to

other DP-based systems with comparable privacy guarantees;

ii) realistic trust assumptions; and iii) practical efficiency in

terms of computational, bandwidth, and financial costs.

(2) a formal analysis of the system’s privacy, security, utility, and

efficiency guarantees.

(3) empiricalmeasurements of the system’s utility and efficiency

over several real-world datasets. We provide an implementation

demo of Nebula as supplementary material.

2 PROBLEM & THREAT MODEL
We consider a scenario where an untrusted service provider (the

aggregation server) wants to obtain a histogram over 𝑁 clients data,

𝐷 = {𝑥𝑖 }𝑁𝑖=1, where data point 𝑥𝑖 is held by the 𝑖-th client. Collect-

ing data generated by clients and publishing the histogram might

introduce privacy risks such as misusing information for profit or

1
Our system can answer related problems such as heavy hitters and quantiles [26].

mass surveillance purposes [27] as clients’ data contain privacy-

sensitive information [10, 12, 19, 22, 26, 27, 29, 35]. Therefore, the

data collection procedure and published histogram must protect

the privacy of clients. We aim to design a system that enables the

aggregation server to construct an accurate and differentially
private histogram over clients datawithout trusting servers and
without imposing high computational and communication
costs. To achieve this, we rely on an additional untrusted party:

the randomness server. We assume that the aggregation and the

randomness server are non-colluding, which is a common assump-

tion [10, 17, 29] as collusion can be made infeasible or too costly via

physical means [3, 42] or strict legal regulations [39]. Following the

literature [10], we consider honest-but-curious clients who submit

their data through an anonymizing proxy.

To protect the clients’ privacy, we useDifferential Privacy (DP) [32,

33]. In particular, we design a randomized protocolA that outputs a

histogram over clients data which is close to the true histogram of𝐷

while satisfying (𝜀, 𝛿)-DP: Pr[A(𝐷) ∈ 𝑆] ≤ 𝑒𝜀Pr[A(𝐷′) ∈ 𝑆] + 𝛿,
for any subset of possible output histograms 𝑆 ∈ Range(A) and
for any two neighboring datasets 𝐷 and 𝐷′ where 𝐷′ is obtained
by removing one client’s data from 𝐷 . The privacy budget 𝜀 upper

bounds the privacy leakage in the worst possible case. The smaller

the 𝜀, the stronger the privacy guarantees. Setting 𝛿 > 0 allow to

relax the privacy requirement for unlikely events. Specifically, our

protocol guarantees that the final output (i.e., published histogram)

satisfies DP, while the aggregation server’s view satisfies compu-

tational DP [45], a restriction of DP to computationally bounded

adversaries commonly considered in privacy-preserving secure pro-

tocols. Among other cryptographic schemes, we use a 𝜏-out-of-𝑁

secret sharing scheme [11],Π𝜏,𝑁 , built out of two standard function-

alities: 1) producing a random 𝜏-out-of-𝑁 share of a private value

through a probabilistic algorithmwith explicit randomness received

as input; 2) recovering the private value after receiving at least its 𝜏

valid secret shares. The randomness server generates randomness

required for Π𝜏,𝑁 , without seeing any plaintext clients’ data and in

a verifiable manner (i.e., clients can verify whether the randomness

server has correctly followed the protocol in zero knowledge).

To ensure efficiency byminimizing financial costs, computational

overhead, and bandwidth consumption, our system incorporates

the following design principles: 1) it avoids any communication

between the randomness server and the aggregation server; 2) it

precludes communication between clients; and 3) it requires mini-

mal efforts from clients, with a single single round of interaction

with each server. Avoiding such communications and interactions

also makes the practical deployment of non-collusion assumptions

more feasible and easier to maintain.

Note that the server and clients agree on two public parameters:

i) the desired differential privacy guarantee (𝜀,𝛿); and ii) the security
parameter 𝜅 used for the secret sharing scheme.

3 NEBULA DESIGN
We present the design of our novel DP and secure system, called

Nebula. Nebula requires no communication between clients, and

only requires two non-cooperating servers (one that operates an

oblivious and verifiable pseudorandom function [53], and one that

aggregates and learns threshold-meeting values from clients).

Nebula: Efficient, Private and Accurate Histogram Estimation CCS ’25, October 13–17, 2025, Taipei, Taiwan

Algorithm 1: Nebula
Input: 𝑁 clients, one randomness server, one aggregation server, Truncated Shifted Discrete Laplace distribution TSDLap(·) , DP guarantee (𝜀, 𝛿) ,
𝜏-out-of-𝑁 secret-sharing scheme Π𝜏,𝑁 , public key parameter pp, hash function 𝐻 (·)
Output: Clients’ submissions revealed to the aggregation server

1: (𝜀Re, 𝛿Re), (𝜀Unre, 𝛿Unre) ← (𝜀, 𝛿) ⊲ All parties agree on sample-and-threshold (Re) and dummy-data (Unre) DP guarantees

2: 𝑝𝑠 , 𝜏 ← (𝜀Re, 𝛿Re) ⊲ Computing sampling rate and aggregation threshold
3: for 𝑖 = 1, . . . , 𝑁 do
4: 𝑟𝑖 = Client-RandomnessServer(𝑥𝑖 , pp, 𝐻 (·)) ⊲ Oblivious and verifiable randomness generation (Algorithm 2)

5: sbm, _← LocalSecretSharing(𝑥𝑖 , 𝑟𝑖 ,Π𝜏,𝑁) ⊲ Each client locally encrypts their data (Algorithm 3)

6: 𝑧𝑖 = Random([0, 1]) ⊲ Each client locally performs a Bernoulli test to decide whether to participate
7: if 𝑧𝑖 ≤ 𝑝𝑠 then
8: Submit sbm to the aggregation server

9: Dummy = DummyDataCreation(𝜏,TSDLap(·), (𝜀Unre, 𝛿Unre)) ⊲ Dummy data creation to protect unrevealed submissions (Algorithm 4)
10: Submit Dummy to the aggregation server

11: ReceivedData = (sbm ∪ Dummy) ⊲ Received encrypted data containing indistinguishable dummy and real messages

12: RecoveredData = Aggregation(ReceivedData) ⊲ The aggregation server performs data aggregation and recovery (Algorithm 5)
13: Return RecoveredData

Algorithm 2: Client-RandomnessServer: Interaction be-

tween clients and the randomness server

Input: A client holding a private item 𝑥 , a randomness server, a

secret key msk, hash function 𝐻 (·)
Output: Randomness 𝑟

1: ℎ = 𝐻 (𝑥) ⊲ Client hashes its value

2: 𝑟 ′ ← 𝑅 ⊲ Client generates a random value

3: 𝑏 = ℎ𝑟
′

⊲ Client sends blinded hash to the server

4: z = 𝑏msk
⊲ Server responds with its ZKproof

5: 𝑤 = z

1

𝑟 ′ ⊲ Client unblinds the response

6: 𝑟 = 𝐻 (𝑤,𝑥) ⊲ Client obtains the randomness
7: Return 𝑟

At a high level, Nebula (Algorithm 1) works as follows: i) Each
client independent of other clients obliviously communicates with

the randomness server and encrypts its data; ii) Each client per-

forms a Bernoulli test on whether to participate: with probability

𝑝𝑠 it participates and sends its encrypted data to the server, oth-

erwise it abstains; iii) A randomly selected client submits dummy

data by creating groups of dummy data for each possible group

of unrevealed items in {1, ..., 𝜏 − 1} to bound the information that

the aggregation server might learn from unrevealed submissions;

iv) The aggregation server receives real submissions and dummy

data, and performs the decoding such that it learns aggregate sub-

missions shared by at least 𝜏 clients in the sampled set. Note that

the system is designed such that dummy data does not impact the

correctness and utility of the aggregations (see Section 3.3). In the

rest of this section, we describe each of these steps in detail.

3.1 Oblivious & Verifiable Randomness
Each client starts by sampling randomness 𝑟 from the randomness

server that runs a Verifiable Oblivious PseudoRandom Function

(VOPRF) [29] that adheres to the standard ideal functionality [2]

with security guarantees proven in the Universal Composability

framework [37]. This VOPRF construction allows clients that con-

tribute the same original value to consistently receive the same

randomness 𝑟 , while ensuring that: i) the randomness server does

not learn the clients’ values; ii) the server cannot detect when multi-

ple clients share the same input; iii) clients do not learn the server’s

PRF keys; and iv) no communication is required between clients.

Server-side setup.The randomness server initializes the VOPRF by

generating public cryptographic parameters pp← VOPRF.setup(1𝜅)
given the security parameter 𝜅 . The randomness server then gener-

ates a keypair (msk,mpk) ← KeyGen(pp), consisting of a secret

key msk and a public key mpk, using a Key Generation algorithm

KeyGen parameterized by pp.

Once the VOPRF setup is complete, each client interacts with

the randomness server to obtain its randomness 𝑟 , as described in

Algorithm 2 and outlined below.

Client-side requests. Each client produces a request using their

input data as follows. The client first samples a local blinding factor

𝑟 ′, then computes a blinded representation of their original data

value 𝑥 as 𝑏 = 𝐻 (𝑥)𝑟 ′ . The client then sends the blinded value 𝑏 to

the untrusted randomness server.

Server-side responses. Upon receiving 𝑏, the randomness server

evaluates the VOPRF function by computing 𝑧 = 𝑏msk
using their

secret key msk. The randomness server returns 𝑧 to the client.

Finally, the client unblinds the received response(𝑤 = 𝑧1/𝑟
′
) and

derives the final pseudorandom output as (𝑟 = 𝐻 (𝑤, 𝑥)).

3.2 Local Data Preparation and Submission
To secret-share the data (Algorithm 3), the client parses 𝑟 into

{𝑟1, 𝑟2, 𝑟3} using a random oracle model hash function. Each of these

three randomness components are used for different purposes.

𝑟1 is used to seed a PR generator function and derive a Key for a

symmetric encryption scheme which satisfies IND-CPA security

and consists of two algorithms: i) encryption: producing ciphertext

of a data with key; and ii) decryption: outputting a data given its

ciphertext under the key. Using the encryption algorithm, we obtain

the encrypted client’s input data c = Enc(Key, x). 𝑟2 is used as

the randomness input to Π𝜏,𝑁 for producing a random 𝜏-out-of-𝑁

share
2 𝑠𝑘 ∈ 𝐹𝑞 of 𝑟1.Π𝜏,𝑁 operates in a finite field 𝐹𝑞 for some prime

2
Note that our implementation of 𝜏-out-of-𝑁 secret sharing produces random shares

without any client’s identity.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Shahin Shamsabadi et al.

Algorithm 3: LocalSecretSharing: Client data encoding
Input: A client holding a data point 𝑥 , randomness 𝑟 , 𝜏-out-of-𝑁 secret-sharing scheme Π𝜏,𝑁

Output: Encoded data sbm

1: 𝑟1, 𝑟2, 𝑟3 ← 𝐻 (𝑟𝑎 ∥1), 𝐻 (𝑟𝑏 ∥2), 𝐻 (𝑟𝑐 ∥3) such that 𝑟𝑎 ∥𝑟𝑏 ∥𝑟𝑐 = 𝑟 ⊲ Parsing the randomness to three random values

2: Key = PseudorandomGenerator(𝑟1) ⊲ Deriving a symmetric key using pseudorandom generator with 𝑟1 as the seed

3: c← Enc(Key, x) ⊲ Encrypting the data and generating a ciphertext

4: 𝑡 ← 𝑟3 ⊲ Generating a tag for the data using 𝑟3

5: 𝑠 = Π𝜏,𝑁 (𝑟1; 𝑟2) ⊲ Constructing a secret-share of the random value 𝑟1 used for deriving the encryption key

6: sbm← (c, 𝑠, 𝑡) ⊲ Creating a tagged submission for the data
7: Return sbm, Key

Algorithm 4: DummyDataCreation: Create groups of

dummy data

Input: A public thresholding value 𝜏 , Truncated Shifted Discrete

Laplace distribution TSDLap(·) , DP guarantees

(𝜀Unre, 𝛿Unre)
Output: A set of dummy data

1: Dummy = {} ⊲ The set containing groups of dummy data
2: Select a client for creating dummy data

3: for 𝑖 = 1, . . . , 𝜏 − 1 do
4: 𝛼 ← TSDLap(𝜆 = 2/𝜀Unre, 𝑡 = 2 + 2/𝜀Unre log(2/𝛿Unre))
5: {t𝑗 }𝛼𝑗=1 = UniqueTagGenerator(𝛼) ⊲ Unique tags

6: for 𝑗 = 1, . . . , 𝛼 do
7: 𝑠 𝑗 = { (𝑐 𝑗 , 𝑠 𝑗 , t𝑗)𝑖 } ⊲ The client creates a set containing

𝑖 zero-value items with the same unique tag
8: Dummy.append(𝑠 𝑗)
9: Return Dummy

𝑞 > 0 with information-theoretic security [11].Π𝜏,𝑁 consists of two

algorithms: i) share: producing a random share of the data with a

particular randomness; ii) recover: reconstructing the data given at

least its 𝜏 valid shares. 𝑟3 is used as a tag informing the aggregation

server which shares to combine to recover the encryption key. Each

client constructs their message as sbm← (c, 𝑠, 𝑟3).
Then, each client performs a Bernoulli test on whether to partic-

ipate: with probability 𝑝𝑠 = 𝑛/𝑁 (where 𝑛 is the expected size of

the sampled clients) it sends its encrypted message sbm← (c, 𝑠, 𝑟3)
to the aggregation server, otherwise it abstains.

3.3 Dummy Data Injection
While the aggregation server cannot recover the data values submit-

ted by less than 𝜏 clients, it does observe the tags of these unrevealed

submissions.
3
The aggregation server thus learns the multiplicity

of unrevealed submissions sharing the same tag, which could poten-

tially expose information about their underlying values if the server

possesses additional side information. To control this leakage, Neb-
ula adds dummy submissions such that the amount of information

that the aggregation server can learn about these tags is bounded

within the DP guaranteed range (Algorithm 4
4
). Dummy datamakes

the histogram of unrevealed submissions differentially private. This

3
The cost that we pay in favour of enabling the aggregation server to do the aggregation

by itself without any interaction with other servers/clients in practical scenarios.

4
The efficient version of Algorithm 7 used in our security proof (Appendix A). The

only difference is that the client constructs dummy submissions locally instead of

interacting with the randomness server, trivially tolerated by our security proof.

dummy data injection can be done by randomly selecting a client,

and it does not affect the correctness and utility of the aggregations,

as dummy data is automatically filtered out because each dummy

group is smaller than the threshold (see line 3 in Algorithm 4).

We use the truncated shifted discrete Laplace distribution sup-

ported on {0, ..., 2𝑡}, denoted by TSDLap(𝜆, 𝑡), to generate a positive,
bounded number of dummy data.

Definition 3.1 (Truncated Shifted Discrete Laplace Distribution).
The Truncated Laplace Distribution on {0, ..., 2𝑡} is defined as:

𝑓
TSDLap(𝜆,𝑡) (𝑐) =


exp (− |𝑐−𝑡 |

𝜆
)

𝐴
, if 𝑐 ∈ {0, ..., 2𝑡}

0, otherwise,

(1)

where 𝜆 ∈ (0, 1) is the scale parameter and𝐴 =
∑
2𝑡
𝑐=0 exp

(
− |𝑐−𝑡 |

𝜆

)
=

1 + 2∑𝑡
𝑐=1 exp

(
− 𝑐
𝜆

)
is the normalization constant.

Section 4 proves that subsampling clients, combinedwith dummy

data and thresholding, provides DP guarantees [26, 44].

3.4 Data Aggregation and Recovery
Clients submit their secret-shared values to the aggregation server

through an anonymizing proxy, delinking the submitted value from

any other information identifying the submitter (e.g., IP address,

etc). We deploy an Oblivious HTTP [52] server which is an IETF

draft standard. Oblivious HTTP removes client-identifying informa-

tion from HTTP requests containing client submissions to blind the

aggregator server from learning which client is submitting which

reports, and which reports are being submitted by the same user.

Following the literature,
5
we assume that submissions do not con-

tain timestamps of when data is generated. In practical deployments

where timestamps are observed, we need to make the distribution of

each timestamp independent of the messages and their source such

that it gives no additional information about the sender. This could

be done in various ways. For instance, whenever a client’s data is

encoded on their device, the client locally draws a real number num
uniformly into [0, 1] and send the message at time num.

The aggregation server then recovers any values submitted by

at least 𝜏 clients using the share recovery algorithm on the corre-

sponding share values, 𝑠𝑘 , to recover 𝑟1 and thus the corresponding

data value. As described in Algorithm 5, the aggregation groups

submissions based on their tags such that all submissions in each

5
https://machinelearning.apple.com/research/learning-with-privacy-at-

scale#AppleSecurity

https://machinelearning.apple.com/research/learning-with-privacy-at-scale##AppleSecurity
https://machinelearning.apple.com/research/learning-with-privacy-at-scale##AppleSecurity

Nebula: Efficient, Private and Accurate Histogram Estimation CCS ’25, October 13–17, 2025, Taipei, Taiwan

Algorithm 5: Aggregation: Aggregating and recovering client data

Input: Received𝑀 clients’ submissions {sbm𝑖 }𝑀𝑖=1 where each submission sbm𝑖 ← (c, 𝑠, 𝑡) contains an encrypted data c, a random 𝜏-out-of-𝑁 share

𝑠 and a tag 𝑡 , 𝜏-out-of-𝑁 secret-recovering scheme Π−1
𝜏,𝑁

, PseudorandomGenerator

Output: Decoded clients’ data RecoveredData

1: RecoveredData = {}
2: {groups} = GroupBasedOnTags(sbm𝑖) ⊲ Grouping submissions based on their tags 𝑡 such that all submissions in each group share

the same tag
3: for group ∈ groups do
4: (𝑟1,⊥) ← Π−1

𝜏,𝑁
({𝑠𝑘 } ∀𝑠𝑘 ∈ group) ⊲ Recovering the share if the group contains at least 𝜏 submissions (i.e.,

secret-shares)
5: if 𝑟1 then
6: Key = PseudorandomGenerator(𝑟1) ⊲ Recovering the decryption key using 𝑟1 to seed the pseudorandom generator

7: x = Dec(Key, c) ⊲ Decrypting one of the data within the group

8: RecoveredData.append(x, x, . . . , x︸ ︷︷ ︸
|group| times

) ⊲ Outputting as many data as the size of the group

9: Return RecoveredData

group share the same tag. Then, the aggregation can learn the

submission within groups with cardinality of at least 𝜏 through

performing the following sequential recoveries: 1) the share value

𝑠 from its 𝜏 secret shares 𝑠𝑘 ; 2) 𝑟1 from 𝑠 ; 3) the encryption key Key

from 𝑟1; 5) the client submission using Key as the decryption key.

4 PRIVACY, SECURITY, UTILITY AND
COMMUNICATION ANALYSIS

In this section, we analytically demonstrate that Nebula is a secure
protocol for producing private and highly accurate data outputs

with low communication costs.

4.1 Privacy Analysis
Theorem 4.1. Consider𝑁 clients generating a dataset𝐷 = {𝑥𝑖 }𝑁𝑖=1.

Let 𝜀Unre be the privacy budget used in the creation of dummy data
(Algorithm 4). For 𝜀Re > 0 and 𝛿Re ∈ (0, 1), let 𝑝𝑠 = 𝛼 (1 − 𝑒−𝜀Re) and
𝜏 = 1

𝐶𝛼
ln (1

𝛿Re
) where 0 < 𝛼 ≤ 1 and 𝐶𝛼 = ln (1𝛼) −

1

1+𝛼 . Then, the
view of the aggregation in Nebula satisfies computational (𝜀, 𝛿)-DP
with 𝜀 = max(𝜀Unre, 𝜀Re) and 𝛿 = max(𝛿Unre, 𝛿Re).

Proof. Let𝐷 and𝐷′ be two neighboring input datasets such that
𝐷′ is obtained by removing one client’s data from𝐷 .We aim to show

that the view of the aggregation server satisfies (computational)

(𝜀, 𝛿)-DP. We split our analysis according to two mutually exclusive

events (see Figure 1): either the value corresponding to the extra

client in 𝐷 is revealed (i.e., the corresponding count is greater than

or equal to 𝜏), or it is not.

Unrevealed submission. For unrevealed submissions, the server

only learns the multiplicity of submissions with the same tag. Let

ZUnre be the histogram of the unrevealed submissions computed as

Z +N whereZ is the histogram of multiplicities of the “genuine”

submissions (i.e., Z𝑖 counts the number of unrevealed tags with

multiplicity 𝑖) and N is the noise corresponding to the addition of

dummy contributions. Recall that dummy data are drawn from a

domain disjoint from the original domain, so adding 𝑖 dummies

with the same tag is equivalent to adding noise of value one to the

𝑖-th histogram entryZ𝑖 . AsZ does not have any multiplicity above

𝜏 − 1, the protocol only adds 𝑖 ∈ [𝜏 − 1] different such contributions.

Multiplicity of submissions with the same tag

... ...

Threshold

Revealed submissionsUnrevealed submissions

C
ou

nt
s

Figure 1: Nebula’s output to the aggregation server consists
of a histogramH of multiplicities whereH𝑖 represents the
number of submissions with the same tag, with multiplicity 𝑖
and 𝑖 ∈ [𝑚]. This histogram is obtained based on submissions
that each client sent with probability 𝑝𝑠 (empty bar) and
dummy data (hatched bar).

We know that noise N sampled from the truncated shifted discrete

Laplace distribution TSDLap(𝜆, 𝑡) on {0, ..., 2𝑡} with 𝜆 = Δ/𝜀Unre
and 𝑡 = Δ + Δ/𝜀Unre log(2/𝛿Unre) to ensure (𝜀Unre, 𝛿Unre)-DP [10].

We compute the sensitivity Δ as follows. Removing a client’s data

from 𝐷 decreases the count of the corresponding multiplicity 𝑖 by

one while increasing the count of multiplicity 𝑖−1 by one, resulting
in Z and Z′ (computed on 𝐷 and 𝐷′ respectively) that differ in
two adjacent entries 𝑖 and 𝑖 − 1:

Z𝑖 = Z′
𝑖
+ 1 entry 𝑖

Z𝑖−1 = Z′
𝑖−1 − 1 entry 𝑖 − 1

Z𝑦 = Z′𝑦 other entries ∀𝑦 ∉ {𝑖, 𝑖 − 1}
(2)

Therefore the sensitivity Δ = 2.

Revealed submission. In the event where the differing submission

is revealed, we can leverage DP guarantees of the sample-and-

threshold approach [26]. For completeness and clarity, we give the

full proof below. The bound on the ratio of the probability of the

aggregation server receiving and decoding a group of submissions

CCS ’25, October 13–17, 2025, Taipei, Taiwan Shahin Shamsabadi et al.

with the same tag and multiplicity 𝑖 on 𝐷 and 𝐷′ is computed as

follows. Let 𝑘 be the multiplicity of the extra client’s data item in

𝐷 . The probability of seeing a count of 𝑣 ≥ 𝜏 copies of this item in

the output of 𝐷 is given by the Binomial theorem:(
𝑘

𝑣

)
(1 − 𝑝𝑠)𝑘−𝑣 (𝑝𝑠)𝑣, (3)

and the probability of seeing a count of 𝑣 copies of the same data

in the output of 𝐷′ who holds 𝑘 − 1 copies of the data is(
𝑘 − 1
𝑣

)
(1 − 𝑝𝑠) ((𝑘−1)−𝑣) (𝑝𝑠)𝑣 . (4)

Now, we can bound the ratio of probabilities of seeing data with a

given count 𝑣 by dividing Eq. 3 by Eq. 4 which is
(1−𝑝𝑠)𝑘
𝑘−𝑣 .

Next, we show that the ratio
(1−𝑝𝑠)𝑘
𝑘−𝑣 is between the interval

(𝑒−𝜀Re , 𝑒𝜀Re) except with some small probability.

For the lower bound, we have

𝑒−𝜀Re ≤ (1 − 𝑝𝑠)𝑘
𝑘 − 𝑣 , (5)

for any 𝑣 ≥ 0, which is satisfied if we ensure 𝑝𝑠 ≤ 1 − 𝑒−𝜀Re < 1

(since 𝑣 = 0 is the worst case).

For the upper bound, we have:

(1 − 𝑝𝑠)𝑘
(𝑘 − 𝑣) ≤ 𝑒

𝜀Re . (6)

Rearranging the upper bound, we have:

𝑣 ≤ 𝑘 (1 − 𝑒−𝜀Re + 𝑒−𝜀Re𝑝𝑠) (7)

Note that:

(1) Since 𝑝𝑠 < 1, then 𝑝𝑠 (1 − 𝑒−𝜀ARe) < 1 − 𝑒−𝜀Re and so 𝑝𝑠 <

(1 − 𝑒−𝜀Re + 𝑒−𝜀Re𝑝𝑠).
(2) The bound in eq. (6) is greater than 𝑘𝑝𝑠 , the mean value.

(3) Since 𝑝𝑠 < 1, then (1−𝑒−𝜀Re +𝑒−𝜀Re𝑝𝑠) < 1, so we can define

the probability 𝑞 = (1 − 𝑒−𝜀Re + 𝑒−𝜀Re𝑝𝑠).
As all revealed submissions have a count at least equal to 𝜏 ,

we can thus obtain (𝜀Re, 𝛿Re)-DP by bounding the probability 𝛿Re
of choosing a 𝑣 that is more than max(𝑘𝑞, 𝜏). Using the Chernoff-
Hoeffding bound for the binomial distribution as done in [26], we

get 𝛿Re ≤ exp(− 𝜏𝑞𝐷 (𝑞∥𝑝)). Therefore, sampling with probability

𝑝𝑠 = 𝛼 (1 − 𝑒−𝜀Re) and thresholding with 𝜏 = 1

𝐶𝛼
ln (1

𝛿Re
) where

0 < 𝛼 ≤ 1 and 𝐶𝛼 = ln (1𝛼) −
1

1+𝛼 provides (𝜀Re, 𝛿Re)-DP [26]. □

Note that the aggregation server can publish the final histogram,

which satisfies DP with the same 𝜀 and 𝛿 . Also, as discussed in

Section 2 and Section 3, the randomness server learns nothing about

the plaintext version of the client’s data thanks to the underlying

cryptographic schemes.

4.2 Cryptographic Security
Figure 2 represents the ideal functionality for Nebula. We leverage

the methodology of [29] for producing consistent data encryption.

Appendix A provides all correctness and security proofs of Nebula
following similar arguments to [29].

Ideal Functionality F
Nebula

Participants:
• Aggregation server 𝑆𝐴
• Randomness server 𝑆𝑅
• Clients {𝐶𝑖 }𝑁𝑖=1

Public parameters:
• DP parameters 𝜀, 𝛿 where 𝜀 = max(𝜀Unre, 𝜀Re) and 𝛿 =

max(𝛿Unre, 𝛿Re)
• Noise parameters 𝜆 = 2

𝜀Unre
and 𝑡 = 2 + 2

𝜀Unre
log(2

𝛿Unre
).

• Threshold 𝜏 = 1

𝐶𝛼
ln (1

𝛿Re
) and Subsampling rate 𝑝𝑠 =

𝛼 (1 − 𝑒−𝜀Re)
Inputs:
• Client 𝐶𝑖 ∈ {𝐶𝑖 }𝑁𝑖=1: provides input (𝑥𝑖 , aux𝑖)
• 𝑆𝑅 : provides VOPRF keypair (msk,mpk)
• 𝑆𝐴: provides nothing ⊥

Functionality:
(1) For each client𝐶𝑖 ∈ {𝐶𝑖 }𝑁𝑖=1, sample 𝑏𝑖 ← Bern(𝑝𝑠)
(2) C ← {𝐶𝑖 |𝑏𝑖 = 1}
(3) Sample {𝛼𝑖 }𝜏−1𝑖=1

where each 𝛼𝑖 is sampled inde-

pendently from 𝛼𝑖 ← TSDLap(𝜆 = 2/𝜀Unre, 𝑡 =

2 + 2/𝜀Unre log(2/𝛿Unre)).
(4) For each 𝛼𝑖 , construct 𝛼𝑖 groups of dummy clients

of size 𝑖 with input (𝜔𝑖, 𝑗 , aux𝑖, 𝑗) for all 𝑗 ∈ 𝛼𝑖 .

Each 𝜔𝑖, 𝑗 is a distinct measurement outside the set

of client measurements {𝑥𝑖 }𝑁𝑖=1. Call the set of all
dummy clients D.

(5) For each unique 𝑥ℓ received from C ∪D, construct:

Eℓ =
{
(𝑥ℓ , {𝑥 𝑗 } 𝑗∈ 𝐽 , 𝜏ℓ) : (𝐽 ⊆ [𝑁]) ∧

(
𝑥 𝑗 = 𝑥ℓ

)}
where 𝜏ℓ =

��{x𝑗 } 𝑗∈ 𝐽 �� is the number of sampled

client measurements in Eℓ .
(6) Let Y be an empty map.

(7) For each Eℓ where 𝜏ℓ ≥ 𝜏 , set Y[𝑥ℓ] = Eℓ .
Outputs:
• 𝐶𝑖 : learns nothing ⊥
• 𝑆𝑅 : learns what it would normally learn during the

VOPRF exchange, {FVOPRF (msk, 𝑥𝑖)}𝑁𝑖=1
• 𝑆𝐴: learns a (𝜀, 𝛿) differentially private histogram of

clients’ data, Y, and the cardinality of each group of

inputs 𝑛ℓ ≡ |𝑆ℓ | where 𝑆ℓ is the set of submissions from

C ∪ D which share the same unique measurement 𝑥ℓ .

Figure 2: Ideal functionality for Nebula.

4.3 Communication Analysis
Each client performs only one round of interaction with the ran-

domness server to obtain the necessary randomness for the secret

sharing. In particular, each client submits a 32 byte message con-

sisting of their blinded hash value (see 𝑏 line 3 in Algorithm 2).

In response, the client receives another 32 bytes (see 𝑧 line 5 in

Algorithm 2) from the randomness server. Each client performs

Nebula: Efficient, Private and Accurate Histogram Estimation CCS ’25, October 13–17, 2025, Taipei, Taiwan

only one single interaction with the aggregation server. In partic-

ular, each client submits a 266 byte message, sbm (see line 6 in

Algorithm 3), consisting of an alignment tag (32 bytes), a share of

the encryption key (192 bytes), and their value (approximately 42

bytes). In addition to this, one client needs to send dummy data to

the aggregation server.

Proposition 1. The expected and worst-case number of dummy
data is 𝑡 (𝜏−1)𝜏

2
and 2𝑡 (𝜏−1)𝜏

2
where 𝑡 = 2 + 2/𝜀Unre log(2/𝛿Unre) is

the expectation of the truncated shifted discrete Laplace distribution
and 𝜏 is the threshold for pruning values.

Proof. As discussed in Section 3, we use truncated shifted dis-

crete Laplace distribution, TSDLap(𝜆, 𝑡) on {0, ..., 2𝑡} to generate

dummy data. The expectation of TSDLap(𝜆, 𝑡) is 𝑡 and its maxi-

mum value is 2𝑡 . We sample 𝜏 − 1 times from the truncated shifted

discrete Laplace distribution and each time generate a group of sub-

missions whose cardinality is the same as the bin value. Therefore,

the expected and the maximum number of dummy submissions are

𝑡
(𝜏−1)𝜏

2
and 2𝑡

(𝜏−1)𝜏
2

, respectively. □

As alignment tags for the dummy data are random they can be

generated locally without any communication with the random-

ness server. However, the submitting client needs to send as many

messages as the size of the group to the aggregation server.

4.4 Utility Analysis
The utility of Nebula is unaffected by the inclusion of dummy

data: only the sampling rate 𝑝𝑠 and the threshold 𝜏 affect the ac-

curacy of the histogram estimated by Nebula relative to the true

histogram. Leveraging utility guarantees of sample-and-threshold

approach [26], we can show that Nebula reveals to the aggrega-

tion server, with high probability, any value whose frequency is

sufficiently above the threshold.

Lemma 4.2. Nebula removes a value that is shared by𝑊 clients
with probability at most exp(−(𝑝𝑠𝑊 −𝜏)2 1

2𝑊𝑝𝑠
), where 𝑝𝑠 and 𝜏 are

Nebula’s parameters: the client sampling rate and pruning threshold.

5 NESTED-NEBULA: A VARIANT FOR
HIGH-DIMENSIONAL MARGINAL
HISTOGRAMS

In some scenarios, clients’ data consist of multiple at-

tributes [41, 57, 60]. In this case, each client 𝑖 holds a multi-

dimensional data point that is a vector of 𝐿 ≥ 2 attributes of the

form x𝑖 = [𝑥 (1)𝑖
, 𝑥
(2)
𝑖
, ..., 𝑥

(𝐿)
𝑖
]. Consider the following motivating

and practical example in the case of telemetry [35]. Clients generate

some five-dimensional crash reports while using a Web Browser.

Clients are anonymous and each dimension is a separate attribute: i)
URL visited; ii) the underlying operating system; iii) the state of the
device’s battery; iv) session; and v) token IDs [50]. These attributes

form a client’s crash report. The service provider would like to

learn the marginal histogram (i.e., the frequency among any joint

sequence of attributes) to optimize and improve their application.

Therefore, the service provider wants to maximize the utility of

marginal histogram estimations and get better utility than treating

client data that are made up of multiple attributes as a single

Algorithm 6: Nested-Nebula
Input: 𝑁 clients, each client 𝑖 holding a multi-dimensional data

point x𝑖 = [𝑥 (1)𝑖
, 𝑥
(2)
𝑖

, ..., 𝑥
(𝐿)
𝑖
] with 𝐿 attributes, all other

inputs to Algorithm 1

Output: Clients’ multi-dimensional submissions revealed to the

aggregation server

1: (𝜀Re, 𝛿Re), (𝜀Unre, 𝛿Unre) ← (𝜀, 𝛿) and 𝑝𝑠 , 𝜏 ← (𝜀Re, 𝛿Re)
2: for 𝑖 = 1, . . . , 𝑁 do
3: SBM = {}
4: for ℓ = 1, . . . , 𝐿 do
5: x(:ℓ)

𝑖
= [𝑥 (1)

𝑖
, · · · , 𝑥 (ℓ)

𝑖
]

6: 𝑟
(ℓ)
𝑖

= Client-RandomnessServer(x(:ℓ)
𝑖

, pp, 𝐻 (·))
7: sbm

(ℓ)
𝑖

,Key
(ℓ)
𝑖
← LocalSecretSharing(x(:ℓ)

𝑖
, 𝑟
(ℓ)
𝑖

,Π𝜏,𝑁)
8: if ℓ == 1 then
9: ŝbm

(ℓ)
𝑖 ← sbm

(ℓ)
𝑖

10: else
11: ŝbm

(ℓ)
𝑖 ← Enc(Key(ℓ−1)

𝑖
, sbm

(ℓ)
𝑖
)

12: SBM.append(ŝbm(ℓ)𝑖)
13: 𝑧𝑖 = Random([0, 1])
14: if 𝑧𝑖 ≤ 𝑝𝑠 then
15: Submit SBM to the aggregation server

16: Dummy = DummyDataCreation(𝜏,TSDLap(·), (𝜀Unre, 𝛿Unre))
17: Submit Dummy to the aggregation server

18: ReceivedData = (SBM ∪ Dummy)
19: for ℓ = 1, . . . , 𝐿 do
20: if ℓ == 1 then
21: RecoveredData

(ℓ) ← Aggregation(ReceivedData(ℓ))
22: else
23: ReceivedDataWithKeys

(ℓ) ← Dec(Key(ℓ−1) , ReceivedData(ℓ))
24: RecoveredData

(ℓ) = Aggregation(ReceivedDataWithKeys
(ℓ))

25: Return RecoveredData

data. Indeed, treating all attributes as a single data point means

only those clients whose multi-dimensional data match exactly

across all attributes are considered to have the same value, and this

typically rarely happens in real datasets with many attributes. One

straightforward solution would be to share each individual attribute

or sequence of joint attributes, but this increases privacy risks.

To address these limitations, we propose Nested Nebula (Algo-
rithm 6) that employs a novel multi-dimensional data encoding

with a “hierarchy-of-priority” in which each client constructs a ci-

phertext by iteratively encrypting their ordered attributes such that

the decrypting process halts when facing a low-frequency attribute

that might risk the privacy of clients.

Multi-dimensional local data encryption. In Nested-Nebula,
each client 𝑖 creates 𝐿 sequential prefixes x(:1)

𝑖
, . . . , x(:𝐿)

𝑖
such

that each prefix x(:ℓ)
𝑖

= [𝑥 (1)
𝑖
, · · · , 𝑥 (ℓ)

𝑖
] contains the sequence

of attributes from the beginning to its corresponding index

ℓ ∈ {1, . . . , 𝐿}. These prefixes enable to capture joint histograms of

multiple attributes instead of each individual attribute. Each client

encodes prefixes x(:ℓ) such that rare prefixes (i.e., a sequence of

attributes which are not common across clients) cannot be decoded

(i.e., kept hidden from the server). Each client 𝑖 secret-shares

each prefix ℓ through running Algorithm 2 and Algorithm 3 and

construct message sbm
(ℓ)
𝑖

. Submitting sbm
(1)
𝑖
, sbm

(2)
𝑖
, ..., sbm

(ℓ)
𝑖

separately in ℓ individual messages would result in two issues:

CCS ’25, October 13–17, 2025, Taipei, Taiwan Shahin Shamsabadi et al.

i) it increases privacy loss and reveals all tags that might leak

information; and 2) it increases the overhead for both clients and

servers. To address these issues, we chain the prefix contributions

of each client (see lines 6-9 of Algorithm 6) and create one single

super-message SBM such that decoding the attributes in the previ-

ous prefix would only then allow unlocking the next-longer prefix.

In particular, we construct super-messages that can be iteratively

opened to reveal higher levels of granularity (more attributes) when

the previous prefix is shared by at least 𝜏 clients. To do this, client

𝑖 encrypts each prefix sbm
(ℓ)
𝑖

with the key of its previous prefix

which gets revealed once the previous prefix is decoded. Each prefix

at layer ℓ (except for the first) is then encrypted with the key of the

previously encoded prefix. In particular, each client computes an

encrypted ciphertext ŝbm

(ℓ)
𝑖 ← Enc(Key(ℓ−1) , sbm(ℓ)

𝑖
) with the

described symmetric encryption operation for each ℓ ∈ {2, . . . , 𝐿}.
Finally, each client 𝑖 creates the super-message as the tuple

SBM = (ŝbm(1)𝑖 , . . . , ŝbm
(𝐿)
𝑖) and sends it to the server based on

the outcome of Bernoulli test discussed in Section 3.

We assume that attributes come with a natural order (i.e.,

hierarchy-of-priority). However, this ordering affects the utility

of Nested-Nebula as attributes towards the end of the clients’ sub-

missions are less likely to be learned by the aggregation server. An

interesting future direction is to optimize the ordering of client

attributes based on domain knowledge (e.g. the distribution of data

itself) to achieve high utility.

We also note that the utility improvement of this multi-

dimensional encoding might come at a cost in terms of privacy.

An aggregation server with perfect background knowledge (full

knowledge of all records in 𝐷 , and full knowledge of the victim

record), aiming to infer whether the victim record is in the input

dataset or not, can recover some information. In particular, the

aggregation server can observe tags of unrevealed prefixes ŝbm

(ℓ)
𝑖

whose immediate preceding prefixes ŝbm

(ℓ−1)
𝑖 are decoded. How-

ever, it is common to ignore this leakage in practice [30] as the

above privacy leakage happens for pathological datasets with ex-

tremely skewed distribution and mostly binary values. Several ways

have been proposed to address this leakage in the literature, such

as relaxing the definition of differential privacy by considering

practical data distributions [7, 13, 30, 31, 40, 44].

6 EXPERIMENTS
We implement Nebula (https://github.com/brave-experiments/

Nebula-CCS2025) and empirically validate: i) Effectiveness in
estimating accurate but private histograms: in complement

to the analytical privacy and utility guarantees of Section 4, we

empirically demonstrate that the histogram estimated by Nebula
is close to the true histogram constructed from all clients’ original

data while ensuring strong privacy guarantees. ii) Efficiency in
private and secure data collection: In complement to the analyt-

ical communication costs of Section 4, we empirically demonstrate

the ability of Nebula to scale to real-world use cases thanks to its

low computational, bandwidth and financial costs.

We assess the performance of Nebula on real-world three

datasets. Two of these are privacy-sensitive in nature—the IPUMS

Census dataset and the Foursquare dataset [59]. We also assess the

performance of Nebula on the Complete Works of Shakespeare as

it is commonly used in histogram estimation literature [26].

IPUMS. We use the Integrated Public Use Microdata Series of

United States census data (https://usa.ipums.org/usa/). We consider

15,537,785 data points representing persons through 5 attributes:

SEX, marriage status (MARST), RACE, education (EDUC), AGE.

Foursquare dataset is derived from the mobile app “Foursquare

City Guide”, which takes advantage of a user’s location to guide

them to highly-rated places like restaurants and bars, while a social

networking feature lets the user’s friends know what places they

visit. The dataset contains 33,263,633 check-in events at 3,680,126

venues (in 415 cities in 77 countries). Each venue in the dataset (e.g.

a restaurant) comes with a latitude and longitude granular enough

to identify it uniquely. We pre-process the dataset by extracting the

country code and latitude/longitude pairs of each check-in event.

The result is a CSV file of 33,263,633 rows where each line contains

the location information for one venue visit by one client.

Shakespeare dataset. We also consider the complete works of

William Shakespeare,
6
as if clients were each contributing an indi-

vidual word to generate a frequency distribution. We split the text

on whitespace, and apply basic normalization of punctuation and

capitalization. This results in a sequence of 832,301 values out of

a set of 29,257 unique words. Note that the frequency distribution

is highly peaked, in part because no stop words were removed. To

study the effect of domain size, we also sort words into bins based

on the lower 𝑏 bits of their SHA256 hash, and apply the same algo-

rithms to the bin index, creating a deterministic mapping consistent

with what clients could perform before submission.

Evaluation metrics. We evaluate the effectiveness and efficiency

of Nebula as follows. Effectiveness: We measure utility as a (scalar)

error that quantifies the difference between the estimated and the

true histograms: i) we represent each histogram as a vector, where

the length of the vector corresponds to the total number of bins,

and each entry represents the count in the corresponding bin; ii)

we normalize each histogram by dividing each bin counts by the

total counts; iii) we compute the 𝑙1 norm of the difference between

the estimated and original normalized histograms. Efficiency: We

evaluate the various costs of our framework through (1) Computa-

tional costs measured as CPU running time for both the client-side

encoding step and the server-side aggregation step; (2) Financial

costs based on those running times and per-CPU-hour server rental

prices, and (3) Bandwidth costs by measuring the size of a submis-

sion to the aggregation and randomness servers.

Parameters. As discussed in Section 4, Nebula’s privacy budget

is computed as 𝜀 = max(𝜀Unre, 𝜀Re) and 𝛿 = max(𝛿Unre, 𝛿Re). We

set the parameters of Nebula—threshold 𝜏 , sampling rate 𝑝𝑠 and

shift 𝑡 in TDSLap—such that we obtain a desired (𝜀, 𝛿) privacy
guarantees and a trade-off between utility and communication costs

as follows: (1) Set 𝜀Re = 𝜀 ≤ 1 (smaller 𝜀 provides a stronger privacy

guarantee) and 0 < 𝛼 ≤ 1 to a desired privacy budget and a constant,

respectively, and compute the sampling rate as 𝑝𝑠 = 𝛼 (1 − 𝑒−𝜀); (2)
Set 𝛿Re = 𝛿 to be very small (less than the reciprocal of the total

number of clients) and compute the threshold as 𝜏 = 1

𝐶𝛼
ln (1

𝛿
)

6
Plain text edition from https://cs.stanford.edu/people/karpathy/char-

rnn/shakespeare_input.txt

https://github.com/brave-experiments/Nebula-CCS2025
https://github.com/brave-experiments/Nebula-CCS2025
https://usa.ipums.org/usa/
https://cs.stanford.edu/people/karpathy/char-rnn/shakespeare_input.txt
https://cs.stanford.edu/people/karpathy/char-rnn/shakespeare_input.txt

Nebula: Efficient, Private and Accurate Histogram Estimation CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 1: Comparison of the utility of Nebula against: i) DP
approaches–including all local, shuffle and central models–
under a fixed DP guarantee of 𝜀 = 1; and ii) the threshold-
aggregation technique STAR implementing a 𝐾-anonymity
privacy protection (𝐾 = 20). Utility is assessed as the error
between the estimated and true histograms (↓: the lower,
the better) on Shakespeare (Shak.), IPUMS and Foursquare
(Fours.) datasets.Nebula enforces differential privacy (unlike
STAR) and achieves lower error than both local and shuffle
DP methods. It brings utility closer to that of central DP,
without requiring trust in a central server.

Approaches DP

Utility (↓)
Shak. IPUMS Fours.

Secure threshold-aggregation (STAR [29]) ✗ 0.1934 0.0314 0.6217

Central (Laplace noise [33]) ✓ 0.0348 0.0044 0.0005

Shuffle (Multi-message Bernoulli noise [5]) ✓ 1.2910 0.4344 1.4184

Local (General-Randomized Response [38]) ✓ 1.5921 1.6622 2.0000

Nebula ✓ 0.5772 0.1932 1.3999

where 𝐶𝛼 = ln (1𝛼) −
1

1+𝛼 ; and (3) set 𝑡 = 2 + 2/𝜀Unre log(2/𝛿Unre))
such that 𝜀Unre ≤ 𝜀Re and 𝛿Unre ≤ 𝛿Re. In particular, setting 𝜀 = 1,

𝛼 = 1/6 and 𝛿 = 10
−8

yields 𝑝𝑠 = 0.105, 𝜏 = 20 and 𝑡 = 15.

Implementation of cryptographic primitives.Weuse the Adept

Secret Sharing framework, implemented in v0.2.3 of the “adds” crate.

For randomness stretching / OPRF, we use the Puncturable Partially

Oblivious Pseudorandom Function algorithm, implemented with

v0.4.1 of the “pporpf” crate. Finally, for Symmetric cryptography

and hash functions, we pull from the Strobe protocol framework,

implemented in v0.10.0 of the “strobe-rs” crate.

6.1 Utility Comparison to Existing Works
We evaluate our DP data collection framework, Nebula, against
existing DP methods, and (non-DP) threshold-aggregation systems.

Specifically, we compare Nebula to four baselines: Local DP based
on the generalized randomized response mechanism [38]: Di-

viding the total privacy budget 𝜀 evenly across all attributes, each at-

tribute is locally perturbed by the client using randomized response

under the corresponding per-attribute budget, and the final report

aggregates these noisy responses. Shuffle DP via multi-message
Bernoulli noise addition [5]: Each client reports a value 1 for

their true bin value, and independently reports a value 1 for each

bin of the histogram with probability 𝑝
Shuffle

= 1 − 50

𝜀2𝑁
ln (2/𝛿). A

shuffler collects the messages, concatenates and randomly permutes

them, and forwards the shuffled message to the aggregation server.

The aggregator server can then recover an unbiased estimate of

the histogram. Central DP via Laplace noise addition [33]: the
aggregation server collects the raw client’s data, computes the true

histogram and adds Laplace noise to each bin). STAR [29] with

𝐾-anonymity protection (no DP): Each client encodes their value as

𝐾-out-of-𝑁 secret shares and sends to the aggregation server (with-

out Poisson sampling and dummy data that Nebula introduces for
achieving DP guarantees). The aggregation server decrypts values

submitted by at least 𝐾 clients.

Table 1 shows the histogram estimation error of Nebula, local
DP, Shuffle DP, central DP and STAR on the three datasets. Results

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

0

0.2

0.4

0.6

0.8

1

Number of histogram bins

A
b
s
o
l
u
t
e
e
r
r
o
r Nebula

Local DP

Central DP

Shuffle DP

Figure 3: Utility of Nebula compared with local, Shuffle and
central differential privacy applied to the Shakespeare data-
base as a function of histogram bins using an 𝜀 = 1DP privacy
guarantee. The word-frequency estimate of Nebula is more
accurate than local and shuffle DP while while removing the
trust of the central DP models on the server.

demonstrate that Nebula is more effective than the alternative local

DP and shuffle DP approaches in the collection of high-utility data

with strong DP guarantees: the utility of Nebula is closer to the

utility of the central model of DP in which clients must trust the

server. The absolute error in Shakespeare is the lowest. This is

because Shakespeare’s domain size is smaller than those of the

other two datasets, IPUMS and Foursquare. In these datasets, a

value represents a combination of multiple attributes, causing the

domain size to grow exponentially with the number of attributes.

We further analyze the effect of the domain size in Figure 3.

Words from the Shakespeare dataset are mapped by hash value into

between 64 and 16384 bins. The smaller the number of bins, the

lower the absolute error. As the domain size shrinks, the error trends

toward that of the central DP method, consistent with our above

explanation of the performance difference between datasets. Across

all domain sizes, Nebula consistently achieves significantly lower

absolute error in the estimated histogram compared to local DP.

As the domain size approaches the true domain of the dataset, the

utility advantage of Nebula over Shuffle DP becomes increasingly

evident. Additionally, Nebula is highly communication-efficient:

each client transmits information solely about its held item, while

Shuffle DP produces a message for each possible value. The domain-

independent communication complexity of Nebula is especially

beneficial in large domains [26].

Conversely, the absolute error in Foursquare is very high: this

is because Foursquare consists of multi-attribute data, resulting

in a large domain consisting of specific geographic coordinates.

Next, we discuss a variant of Nebula that can decrease the error

in multi-attribute cases such as Foursquare and IPUMS census.

6.2 Utility Improvements via Nested-Nebula
We analyze the impact of multi-dimensional encoding on the utility

of Nebula in estimating the marginal histogram across both multi-

dimensional dataset: the IPUMS dataset and the Foursquare dataset.

We compare the absolute error of Nebula against Nested Nebula
when estimating the histogram for each prefix.

Figure 4 (first row) demonstrates that multi-dimensional encod-

ings improve the ability of Nebula to collect high-utility multi-

dimensional IPUMS data. As the number of attributes increases in

CCS ’25, October 13–17, 2025, Taipei, Taiwan Shahin Shamsabadi et al.

S SM SMR SMRE SMREA

0

5 · 10−2
0.1

0.15

0.2

IPUMS USA Prefix (i.e., a sequence of attributes)

A
b
s
o
l
u
t
e
e
r
r
o
r

Nested Nebula
Nebula

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)
0.0

0.4

0.8

1.2

1.6

Foursquare Prefix (i.e., a sequence of attributes)

A
b
s
o
l
u
t
e
e
r
r
o
r

Nested Nebula
Nebula

Figure 4: Improving the utility of Nebula in estimating
the histogram on the multi-attribute IPUMS dataset and
Foursquare dataset using multi-dimensional data encoding,
Nested Nebula (Algorithm 6). IPUMS contains 5 attributes–
S: Sex; M: Marriage status; R: Race; E: Education; A: Age.
Foursquare dataset contains 8 prefixes: x(1) = [𝑥1], x(2) =

[𝑥1, 𝑥2], · · · , x(8) = [𝑥1, · · · , 𝑥8]. We compute the utility as
the absolute error between the original histogram and the
estimated histogram. Multi-dimensional data encoding sig-
nificantly improves the absolute error of each marginal his-
togram (i.e., histogram of each sequence of joint attributes).

a prefix, the absolute error of the histogram estimation increases

(when including all attributes, we recover the results of Table 1).

This is because increasing the number of attributes in a prefix de-

creases the chance of having more copies of items, amplifying the

costs of sampling and pruning on revealing the item at the output to

the server: the chance of sampling a low-frequency item decreases

and it is more likely the items will be pruned (see Lemma 4.2).

We now turn to the Foursquare dataset where each element

consists of geographic coordinates and a country code, which are

not independent attributes. However, the chained prefix encoding

can still be applied to improve utility by coarse-graining the

venue locations. If each visit is split into the country code and

successive digits of the coordinates, a sequence of 8 attributes is

produced reporting the event location with increasing granularity.

With this encoding, partial recovery of joint attributes amounts

to recovering regional aggregate popularity at multiple scales.

Figure 4 (second row) shows the improvement in the absolute error

using this multi-dimensional nested encoding for the Foursquare

dataset. To further demonstrate the effectiveness of Nebula and

our multi-dimensional nested encoding, we compare the estimated

Nested Nebula histogram and the true Foursquare histogram of

country codes in Figure 5. We observe that Nested Nebula preserves
the relative frequencies across attribute values. For example, the

most popular items stay popular in the estimated histogram.

6.3 Nebula is Efficient
We evaluate computational, bandwidth, and financial costs.

Table 2: Efficiency of Nebula in terms of running time on
Foursquare and IPUMS datasets, in milliseconds per submis-
sion. The computational overhead of Nebula for clients and
the randomness server is very small.

Party Function

Dataset

Foursquare IPUMS Shakespeare

Client

Encode 4.96 3.07 0.42

Randomness 0.85 0.53 0.21

Server OPRF evaluation 0.48 0.30 0.06

Table 3: Efficiency of Nebula in terms of running time on
three datasets, in seconds for all submissions. The computa-
tional overhead of Nebula for the aggregation server is small.

Party Function

Dataset

Foursquare IPUMS Shakespeare

Server Decode 345 101 8

Table 4: Efficiency of Nebula in terms of bandwidth costs on
Foursquare and IPUMS datasets in bytes per submission. The
bandwidth cost of Nebula is very small.

Interaction Foursquare IPUMS Shakespeare

Client&RandomnessServer 256 160 32

Client&AggregationServer 2465 1470 373

Computational costs. We measure the CPU running time of our

framework on AWS r6a machine for each client, the aggregation

server and the randomness server, separately. Each client performs

two sets of computations: (1) obtain randomness by interacting with

the randomness server (Algorithm 2); and (2) encode attributes to

be submitted to the aggregation server (Algorithm 3). As shown

in Table 2, these steps (1) and (2) take 4.96 and 0.85 milliseconds,

respectively, for each submission from the Foursquare dataset with

the chained-prefix encoding and 8 attributes. Running times are

even lower for the IPUMS dataset as each client holds fewer at-

tributes (five). This running time scales proportionately for the

Shakespeare dataset, where each client submission consists of a

single word without prefix encoding. Per-submission running time

is comparable for all three datasets when the whole value is en-

coded as a single attribute. The running time of the randomness

server (last row in Table 2) is very low; as it only needs to perform

one OPRF evaluation on each client’s request using its secret key.

This takes only 0.48 milliseconds for each Foursquare client submis-

sion. For simplicity, we omit the zero-knowledge proof steps of the

verifiable OPRF in these benchmarks. Table 2 shows the CPU run-

ning time of our framework for the aggregation server. It takes 345

seconds for the server to process all 33,263,633 client submissions

from the Foursquare dataset. Therefore, Nebula introduces only
a very little computational overhead for all parties—clients,
the randomness server and the aggregation server.

Bandwidth costs. Table 4 shows the bandwidth costs that Neb-
ula introduces for each client. The total communication costs of

running Nebula for each client is at most 2.7 KB (not including

Nebula: Efficient, Private and Accurate Histogram Estimation CCS ’25, October 13–17, 2025, Taipei, Taiwan

TR BR US MY ID JP RU MX TH CL PH SG GB KW PE KR UA ES CR BE NL IT CO CA DE AU AR GR PY CN IN FR SA PA LV AE CY BY HU PT MQ DO EG EC LB LK ZA PR SE KE SV FI AT CZ TN VE GH RO IE IL JO QA JM VN KZ BH AZ PL CH NZ BG MA OM UY DK EE TT

Country code

10 3

10 2

10 1

De
ns

ity
Nebula Histogram Estimation vs Original Histogram

Method
Nebula
Original

Figure 5: Original and estimated histogram obtained privately by Nebula using Foursquare dataset. The private histogram
estimated by Nebula is close to the histogram of the original data. Nebula also preserves the relative order across values.

0 500 1,000
0.00

0.01

0.02

0.03

Number of attributes

C
l
i
e
n
t
&
R
a
n
d
o
m
n
e
s
s
S
e
r
v
e
r

Bandwidth Overhead (MB)

0.00

0.10

0.20

0.30

C
l
i
e
n
t
&
A
g
g
r
e
g
a
t
i
o
n
S
e
r
v
e
r

0 500 1,000
0

2

4

6

Number of attributes

C
l
i
e
n
t
a
n
d
b
o
t
h
S
e
r
v
e
r
s

Running time (Seconds)

Figure 6: Scalability of Nebula in terms of the computational
and bandwidth overhead introduced for clients.Nebula scales
to a large number of attributes with negligible costs.

framing and transport overhead) for the multi-attribute Foursquare

encoding, combining the interaction of each client with both the

randomness and the aggregation servers. Each client submits about

300 bytes per attribute with some fixed overhead for internal fram-

ing combining all communication, with most of that traffic going

to the aggregation server. See Section 4.3 for a detailed breakdown.

Dummy data submitted to hide below-threshold submissions is

𝑡
(𝜏−1)𝜏

2
(expectation) and 2𝑡

(𝜏−1)𝜏
2

(worst-case) where 𝑡 is the ex-

pectation of the truncated discrete Laplace distribution and 𝜏 is the

threshold for pruning values. Given our parameter values 𝑡 = 14

and 𝜏 = 20, this amounts to a few thousand extra aggregation server

reports which is still quite small in absolute terms, and completely

negligible on the server side. Therefore, Nebula introduces very
small bandwidth costs for clients.

Financial costs.We compute the financial costs of running Nebula
for the aggregation and randomness servers. We benchmarked Neb-
ula on an AWS r6a.4xlarge instance, currently priced at US$0.9072

per hour. As such, the amortized cost of aggregating submissions

from the IPUMS dataset is 0.03 USD, the Foursquare dataset 0.09

USD, and the Complete Works of Shakespeare only 0.002 USD.

1 5 10 15 20 25 30 33

0

100

200

300

Number of clients (M)

R
u
n
n
i
n
g
t
i
m
e
(
s
e
c
o
n
d
s
)

0

2

4

6

8

·10−2

F
i
n
a
n
c
i
a
l
c
o
s
t
s
(
U
S
D
)

Figure 7: Scalability of Nebula in terms of the computational
and financial costs for the aggregation server. Nebula scales
to a large number of clients with negligible costs.

6.4 Nebula is Scalable
We further analyze the scalability of Nebula by considering various

numbers of attributes using the same hardware described in

Section 6.3. Timings for the IPUMS and Foursquare datasets report

the more expensive multi-attribute encoding scheme (Algorithm 6),

while the Shakespeare dataset does not use multiple attributes and

represents the whole-value reporting scheme in general. Figure 6

shows the effect of the number of attributes on the bandwidth

and computational costs of clients needed to interact with the

randomness server and prepare the submission to the aggregation

server. Interaction with the randomness server scales linearly with

the number of attributes, since the OPRF must be evaluated sep-

arately for each prefix. Bandwidth costs of each client interacting

with the aggregation server also scale linearly with the number

of attributes. Finally, we observe that the time of Nebula run by

each client scales linearly with the number of attributes. This is

because run time is dominated by the key share and encryption

steps which in the multi-attribute scheme need to be done once per

attribute to allow partial recovery of multivariate joint attributes.

Finally, we analyzed the scalability of Nebula by considering

various numbers of clients. Figure 7 shows the running time and

financial costs of the aggregation server as a function of number

of clients. Nebula can collect multi-dimensional data from a
very large number of clients with small costs.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Shahin Shamsabadi et al.

7 RELATEDWORK

Threshold-aggregation data collection systems [8, 9, 14, 19, 20,
23, 29, 47, 49, 61] allow a central party to learn submitted values

if and only if a predefined number of clients send the exact same

value. Poplar [19] uses distributed point functions to create a secret

sharing pair of a vector in which only a single element with an

index corresponding to the client’s data is non-zero. Clients then

send their secret shares to two non-colluding aggregation servers,
which compute the sum of submitted shares and publish the sum

values. STAR [29] uses a different 𝜏-out-of-𝑁 secret-sharing scheme

to avoid the need for two aggregation servers. Clients encode their

values as secret shares, and send their shares to a single aggregation
server, which is to decrypt values that have been encoded by at

least 𝜏 submitted shares. STAR provides high efficiency and more

desirable trust requirements than Poplar, though at the cost of

leaking the histogram of unrecovered values (i.e., values submitted

by less than 𝜏 clients). POPSTAR [43] tries to hide the distribution

of unrevealed values in STAR, though in a manner that requires

significantly more computation (7x computation, and an estimated

2-3x increase in the required time, compared to the dataset as STAR).

Existing threshold aggregation systems have significant limita-

tions. First, all threshold-aggregation systems, like all deterministic

𝑘-anonymity systems, lack robust, provable privacy guarantees.

Furthermore, current threshold-aggregation systems (including

Poplar and STAR) are only well-suited to handle single-dimension

values. Trying to use these systems to handle multi-dimensional

records entails significant utility loss. One option is to flatten multi-

dimensional records into a single dimension (e.g., concatenation,

summation, etc.), and run the system on that “flattened” value. This

approach significantly harms utility, since submitted records would

need to match across all original dimensions to count towards each

record’s recovery threshold, decreasing the amount of information

the server is able to recover. The second option is to have clients

submit each dimension independently, treating a record with three

attributes as three independent records. This also harms utility,

though in a different way: the aggregation server is unable to learn

any relationships or correlations between data attributes.

Our proposed system, Nebula, works better than these systems

in terms of both utility and privacy by i) allowing clients to submit

data with multiple attributes such that the utility of marginal

histogram estimations is maximized; and ii) satisfying strong

differential privacy guarantees (through sampling followed by

pruning, and dummy data) without trusting servers.

Differentially private data collection systems. Differential Pri-
vacy (DP) [33] uses statistical indistinguishably to ensure privacy.

DP is typically implemented in one of two forms: first, a central
model where the aggregation server receives unmodified user data,

who then applies privacy protections to the data before sharing it,

and second, a local model, where users apply privacy protections to

their own data before sharing it with the aggregation server. These

approaches achieve different privacy-utility trade offs.

Central DP systems provide high utility, but suffer from often

prohibitive trust assumptions (i.e., clientsmust trust the aggregation

server and send their raw data to the server). This is a practical prob-

lem, as many servers do not provide the privacy protections they

promise (intentionally or otherwise) [51]. Central DP systems also

carry the risk of a single point of failure for data breaches [25, 54].

Local DP systems, on the other hand, provide strong privacy

guarantees, typically by perturbing data before revealing it to un-

trusted parties [8, 61]. This greatly improves the privacy and secu-

rity properties of the system, but at the cost of reducing the utility

of the aggregated data. The shuffle model of DP [5] improves the

utility by allowing to perturb data with less noise, while trusting

an intermediate shuffler to apply a uniform random permutation

to all data before the aggregation server views them.

More recent DP proposals attempt to achieve better utility

through using multi-party computation or homomorphic encryp-

tion to actually reduce the level of trust required in central DP

systems [10, 15, 17, 18, 24, 25, 27, 48]. For example, Bell et.al., [10]

present a protocol for computing DP histograms carried out be-

tween two non-colluding aggregation servers. In each round

of server-to-server communication, each server injects carefully

crafted dummy data into its message, ensuring that the additional

leakage revealed to other server beyond the output remains dif-

ferentially private–a DP anonymized histogram of indices to one

server and a DP anonymized histogram of values to other server.

But these proposals suffer from their own drawbacks, including i)
requiring networks of non-colluding servers, a majority of whom

are assumed to behave honestly [27], ii) imposing high computa-

tion and communication overheads costs [24], iii) only being suited
for simple aggregation functions [15, 17, 18, 48], and iv) requiring
interactive communication between clients and servers. Requiring

interactions between the servers (more than 1 aggregation server)

makes it more difficult to guarantee the non-collusion requirement

and it may also have practical costs (e.g., it may be harder to recruit

collaborative partners). Finally, most DP systems are also limited to

one-dimensional data, limiting their utility or applicability to many

scenarios.

Our system, Nebula, obtains better utility than both local DP

randomized and shuffling
7
as: i) the utility error of Nebula is

independent of the number of attributes as opposed to local DP

randomizers in which the noise grows significantly as the number

of attributes increases; ii) in contrast to existing DP systems,

Nebula does not add explicit noise, thus introducing no spurious

attribute values. In addition to this, our system avoids prohibitive

trust assumptions required in the central model deployment of DP

while being efficient because of not requiring expensive multi-party

computations and homomorphic encryption operations.

Trusted hardware. Finally, a third-general approach to private

data collection uses trusted hardware to enforce privacy guarantees.

For example, Prochlo [14] uses trusted hardware to collect unmod-

ified data from clients. This trusted hardware is able to collect,

shuffle, and modify user data before privacy protections are applied

to the data. Once these trusted servers have received sufficient data,

it is modified and passed onto untrusted hardware, which does

the primary data summarizing and aggregation. Trusted hardware

carries a wide range of downsides and limitations though, including

relatively high cost, resource limitations (in some cases), and (in

many cases) merely re-shuffled trust requirements. Approaches

7
Bharadwaj and Cormode [26] analytically and empirically demonstrated the superior

performance of the sample-and-threshold compared to the shuffle model of DP.

Nebula: Efficient, Private and Accurate Histogram Estimation CCS ’25, October 13–17, 2025, Taipei, Taiwan

like mix-nets [23] and verifiable shuffling [47] can provide security

and privacy guarantees similar to (but without requiring) trusted

hardware, though at the cost of increased interactivity.

8 DISCUSSION AND FUTUREWORK
In this paper, we proposed Nebula that can be used to privately esti-

mate and publish histogram of data generated by clients. Nebula in-
troduces necessary randomness for the privacy protection of clients

through sampling, thresholding, and dummy data injection, and

removes the trust assumption on the server through a customized

secret-sharing protocol. Incorporating synergies and optimizations

on both fronts of sample-and-threshold differential privacy and

secure threshold aggregation enables Nebula to provide high util-

ity without imposing prohibitive trust requirements, relying on

computationally expensive cryptographic operations, or requiring

bandwidth-intensive multi-round communications between clients

and servers. We analytically and empirically demonstrated that

Nebula is effective, efficient and scalable.

We conclude by discussing some limitations of our approach and

by outlining promising directions for future work. As discussed

in Section 2, our threat model, like those commonly found in the

literature, assumes honest-but-curious clients. An interesting future

work is to extend Nebula to defend against malicious clients who

either deviate from the protocol or collude with one or both servers

to compromise the privacy of honest clients. Another interesting

direction involves designing efficient protocols for the verifiable

selection of a single client (or a subset of clients) to generate and

submit dummy data, as outlined in Section 3.3.

Acknowledgements.We thanks Olive Franzese, Sofía Celi, and

Alex Davidson for useful comments and feedback.

REFERENCES
[1] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. 2019. Hadamard Response:

Estimating Distributions Privately, Efficiently, and With Little Communication.

In Artificial Intelligence and Statistics (AISTATS).
[2] Martin R Albrecht, Alex Davidson, Amit Deo, and Nigel P Smart. 2021. Round-

Optimal Verifiable Oblivious Pseudorandom Functions from Ideal Lattices. In

Practice and Theory of Public-Key Cryptography (PKC).
[3] Joël Alwen, Abhi Shelat, and Ivan Visconti. 2008. Collusion-Free Protocols in the

Mediated Model. In International Cryptology Conference (CRYPTO).
[4] J Andrew, R Jennifer Eunice, and J Karthikeyan. 2023. An Anonymization-Based

Privacy-Preserving Data Collection Protocol for Digital Health Data. Frontiers in
Public Health (2023).

[5] Victor Balcer and Albert Cheu. 2019. Separating Local & Shuffled Differential

Privacy via Histograms. In Information-Theoretic Cryptography (ITC).
[6] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. 2019. The Privacy

Blanket of the Shuffle Model. In Advances in Cryptography (CRYPTO).
[7] Raef Bassily, Adam Groce, Jonathan Katz, and Adam Smith. 2013. Coupled-

Worlds Privacy: Exploiting Adversarial Uncertainty in Statistical Data Privacy.

In Foundations of Computer Science (FOCS).
[8] Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Thakurta. 2020. Practical

Locally Private Heavy Hitters. Journal of Machine Learning Research (JMLR)
(2020).

[9] Raef Bassily and Adam Smith. 2015. Local, Private, Efficient Protocols for Succinct

Histograms. In Symposium on Theory of Computing (STOC).
[10] James Bell, Adria Gascon, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Mariana

Raykova, and Phillipp Schoppmann. 2022. Distributed, Private, Sparse Histograms

in the Two-Server Model. In Computer and Communications Security (CCS).
[11] Mihir Bellare, Wei Dai, and Phillip Rogaway. 2020. Reimagining Secret Sharing:

Creating a Safer and More Versatile Primitive by Adding Authenticity, Correcting

Errors, and Reducing Randomness Requirements. In Privacy Enhancing Technolo-
gies (PETS).

[12] Akash Bharadwaj and Graham Cormode. 2023. Federated computation: a survey

of concepts and challenges. Distributed and Parallel Databases (2023).

[13] Raghav Bhaskar, Abhishek Bhowmick, Vipul Goyal, Srivatsan Laxman, and

Abhradeep Thakurta. 2011. Noiseless Database Privacy. In Theory and Application
of Cryptology and Information Security (ASIACRYPT).

[14] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard

Seefeld. 2017. Prochlo: Strong Privacy for Analytics in the Crowd. In Symposium
on Operating Systems Principles (SOSP).

[15] Jonas Boehler and Florian Kerschbaum. 2022. Secure Sublinear TimeDifferentially

Private Median Computation. US Patent 11,238,167.

[16] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. 2016. Privacy-

Preserving Tax Fraud Detection in the Cloud with Realistic Data Volumes. T-4-24,
Cybernetica AS (2016).

[17] Jonas Böhler and Florian Kerschbaum. 2020. Secure Multi-Party Computation of

Differentially Private Median. In USENIX Security Symposium (USENIX).
[18] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-

tical Secure Aggregation for Privacy-Preserving Machine Learning. In Computer
and Communications Security (CCS).

[19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. 2021.

Lightweight Techniques for Private Heavy Hitters. In Symposium on Security and
Privacy (SP).

[20] Mark Bun, Jelani Nelson, and Uri Stemmer. 2019. Heavy Hitters and the Structure

of Local Privacy. Transactions on Algorithms (TALG) (2019).
[21] Ran Canetti. 2000. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. Cryptology ePrint Archive.

[22] Karan Chadha, Junye Chen, John Duchi, Vitaly Feldman, Hanieh Hashemi, Omid

Javidbakht, Audra McMillan, and Kunal Talwar. 2023. Differentially Private

Heavy Hitter Detection using Federated Analytics. In Secure and Trustworthy
Machine Learning (SaTML).

[23] David L. Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Commun. ACM (Feb. 1981), 84–90.

[24] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev.

2019. Distributed Differential Privacy via Shuffling. In Theory and Applications of
Cryptographic Techniques (EUROCRYPT).

[25] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala,

and Somesh Jha. 2020. Crypt𝜖 : Crypto-Assisted Differential Privacy on Untrusted

Servers. In International Conference on Management of Data (SIGMOD).
[26] Graham Cormode and Akash Bharadwaj. 2022. Sample-and-threshold differen-

tial privacy: Histograms and applications. In Artificial Intelligence and Statistics
(AISTATS).

[27] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable

Computation of Aggregate Statistics. In Networked Systems Design and Imple-
mentation (NSDI).

[28] Henry Corrigan-Gibbs, Dan Boneh, Gary Chen, Steven Englehardt, Robert

Helmer, Chris Hutten-Czapski, Anthony Miyaguchi, Eric Rescorla, and Peter

Saint-Andre. 2020. Privacy-preserving Firefox Telemetry with PRIO. https:

//rwc.iacr.org/2020/slides/Gibbs.pdf.

[29] AlexDavidson, Peter Snyder, E. V. Quirk, JosephGenereux, Benjamin Livshits, and

Hamed Haddadi. 2022. STAR: Distributed Secret Sharing for Private Threshold

Aggregation. In Computer and Communications Security (CCS).
[30] Damien Desfontaines and Balázs Pejó. 2020. Sok: Differential Privacies. In Privacy

Enhancing Technologies (PETS).
[31] Yitao Duan. 2009. Privacy Without Noise. In Information and Knowledge Man-

agement (CIKM).
[32] Cynthia Dwork. 2006. Differential Privacy. In International Colloquium on Au-

tomata, Languages, and Programming (ICALP).
[33] Cynthia Dwork, Aaron Roth, et al. 2014. The Algorithmic Foundations of Differ-

ential Privacy. Foundations and Trends in Theoretical Computer Science (2014).
[34] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal

Talwar, and Abhradeep Thakurta. 2019. Amplification by Shuffling: From Local to

Central Differential Privacy via Anonymity. In Symposium on Discrete Algorithms
(SODA).

[35] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Ran-

domized aggregatable privacy-preserving ordinal response. In Computer and
Communications Security (CCS).

[36] Naoise Holohan, Spiros Antonatos, Stefano Braghin, and Pól Mac Aonghusa.

2011. (𝑘 , 𝜖)-Anonymity: 𝑘-Anonymity with 𝜖-Differential Privacy. arXiv (2011).

doi:10.48550/arXiv.1101.26046

[37] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. 2014. Round-Optimal

Password-Protected Secret Sharing and T-PAKE in the Password-Pnly model. In

Theory and Application of Cryptology and Information Security (ASIACRYPT).
[38] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. 2017. Extremal Mechanisms

for Local Differential Privacy. Journal of Machine Learning Research (JMLR)
(2017).

[39] Seny Kamara, Payman Mohassel, and Mariana Raykova. 2011. Outsourcing

Multi-Party Computation. Cryptology ePrint Archive (2011).
[40] Daniel Kifer and Ashwin Machanavajjhala. 2012. A Rigorous and Customizable

Framework for Privacy. In Principles of Database Systems (PODS).

https://rwc.iacr.org/2020/slides/Gibbs.pdf
https://rwc.iacr.org/2020/slides/Gibbs.pdf
https://doi.org/10.48550/arXiv.1101.26046

CCS ’25, October 13–17, 2025, Taipei, Taiwan Shahin Shamsabadi et al.

Ideal Functionality FSTAR

Participants:
• Aggregation server 𝑆𝐴
• Randomness server 𝑆𝑅
• Clients {𝐶𝑖 }𝑁𝑖=1

Public parameters:
• Threshold 𝜏

Inputs:
• 𝑆𝑅 : provides VOPRF keypair (msk,mpk).
• Client 𝐶𝑖 ∈ {𝐶𝑖 }𝑁𝑖=1 provides input (𝑥𝑖 , aux𝑖) and a

bit 𝑏𝑖 to indicate protocol abort immediately after the

Randomness Phase.

• 𝑆𝐴 has no inputs, provides ⊥
Functionality:

(1) For each unique 𝑥ℓ construct:

Eℓ =
{
(𝑥ℓ , {aux𝑗 } 𝑗∈ 𝐽 , 𝜏ℓ) : (𝐽 ⊆ [𝑁]) ∧

(
𝑥 𝑗 = 𝑥ℓ

)
∧ (𝑏 𝑗 = 1)

}
where 𝜏ℓ =

��{x𝑗 } 𝑗∈ 𝐽 �� is the number of sampled

client measurements in Eℓ .
(2) Let Y be an empty map.

(3) For each Eℓ where 𝜏ℓ ≥ 𝜏 , set Y[𝑥ℓ] = Eℓ .
Outputs:
• output Y to 𝑆𝐴
• output {FΓ (msk, 𝑥𝑖)}𝑁𝑖=1 to 𝑆𝑅 , where FΓ is an ideal

functionality for VOPRF protocol Γ.
• output ⊥ to each {𝐶𝑖 }𝑁𝑖=1

Figure 8: Ideal functionality for STAR [29].

[41] Douglas J Leith. 2021. Mobile Handset Privacy: Measuring the Data iOS and

Android Send to Apple and Google. In Security and Privacy in Communication
Networks (SecureComm).

[42] Matt Lepinksi, Silvio Micali, and Abhi Shelat. 2005. Collusion-free protocols. In

Proceedings of the 37th annual ACM symposium on Theory of computing.
[43] Hanjun Li, Sela Navot, and Stefano Tessaro. 2024. POPSTAR: Lightweight Thresh-

old Reporting with Reduced Leakage. In USENIX Security Symposium (USENIX).
[44] Ninghui Li, Wahbeh H Qardaji, and Dong Su. 2011. Provably Private Data

Anonymization: Or, K-Anonymity Meets Differential Privacy. arXiv (2011). doi:10.
48550/arXiv.1101.2604

[45] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. 2009. Compu-

tational Differential Privacy. In International Cryptology Conference (CRYPTO).
[46] Arvind Narayanan and Vitaly Shmatikov. 2006. How to Break Anonymity of the

Netflix Prize Dataset. arXiv (2006). doi:10.48550/arXiv.cs/0610105

[47] C Andrew Neff. 2001. A Verifiable Secret Shuffle and its Application to E-Voting.

In Computer and Communications Security (CCS).
[48] Martin Pettai and Peeter Laud. 2015. Combining Differential Privacy and Secure

Multiparty Computation. In Annual Computer Security Applications Conference
(ACSAC).

[49] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2016.

Heavy Hitter Estimation Over Set-Valued Data with Local Differential Privacy.

In Computer and Communications Security (CCS).
[50] Kiavash Satvat and Nitesh Saxena. 2018. Crashing Privacy: An Autopsy of a Web

Browser’s Leaked Crash Reports. arXiv (2018). doi:10.48550/arXiv.1808.01718

[51] Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xueqiang Wang, and Xiaofeng

Wang. 2017. Privacy Loss in Apple’s Implementation of Differential Privacy on

MacOS 10.12. arXiv (2017). doi:10.48550/arXiv.1709.02753

[52] Martin Thomson and Christopher A. Wood. 2022. Oblivious HTTP. Internet-Draft
draft-ietf-ohai-ohttp-05. IETF Secretariat.

[53] Nirvan Tyagi, Sofía Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tessaro, and

Christopher A. Wood. 2022. A Fast and Simple Partially Oblivious PRF, with

Applications. In Theory and Applications of Cryptographic Techniques (EURO-
CRYPT).

[54] Tommaso Venturini and Richard Rogers. 2019. “API-Based Research” or How

Can Digital Sociology and Journalism Studies Learn from the Facebook and

Cambridge Analytica Data Breach. Digital Journalism (2019).

[55] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Cheung Hui, Hyejin Shin,

Junbum Shin, and Ge Yu. 2019. Collecting and Analyzing Multidimensional Data

with Local Differential Privacy. In International Conference on Data Engineering
(ICDE).

[56] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017. Locally

Differentially Private Protocols for Frequency Estimation. In USENIX Security
Symposium (USENIX).

[57] Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong Huang, Ninghui

Li, and Somesh Jha. 2019. Answering Multi-Dimensional Analytical Queries

Under Local Differential Privacy. In International Conference on Management of
Data (ICDAM).

[58] Jia Xu, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, Ge Yu, and Marianne Winslett.

2013. Differentially Private Histogram Publication. The VLDB journal (2013).
[59] Dingqi Yang, Daqing Zhang, and Bingqing Qu. 2016. Participatory Cultural

Mapping Based on Collective Behavior Data in Location-Based Social Networks.

Transactions on Intelligent Systems and Technology (TIST) (2016).
[60] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, and Jiming Chen. 2018.

CALM: Consistent Adaptive Local Marginal for Marginal Release Under Local

Differential Privacy. In Computer and Communications Security (CCS).
[61] Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei Li.

2020. Federated Heavy Hitters Discovery with Differential Privacy. In Artificial
Intelligence and Statistics (AISTATS).

A SECURITY PROOF

Formal Security Model. Aggregation Server 𝑆𝐴 may be corrupted

by a malicious adversary with arbitrary behavior. It is assumed not

to collude with the randomness server or any clients; Randomness

Server 𝑆𝑅 may be corrupted by amalicious adversary with arbitrary

behavior. It is assumed not to collude with 𝑆𝐴 or any clients; Clients

{𝐶𝑖 }𝑁𝑖=1 may be corrupted by a semi-honest adversary. Corrupted
clients follow the protocol, but seek to learn information about

other parties. They are assumed not to collude with other parties.

Nebula effectively employs a protocol for secure computation of

private threshold aggregation reporting (STAR [29]) as a subroutine,

with additional elements for guaranteeing differential privacy over

its outputs. To reason about the security of Nebula, we will begin by

recalling the elements that are the same between the two protocols.

In particular, Algorithm 2 plus lines 1-2 of Algorithm 3 are equiv-

alent to the Randomness Phase of [29] with a VOPRF as instantiated

in [2], assuming the hash function 𝐻 is a secure random oracle.

The remainder of Algorithm 3 is equivalent to the Message Phase

of [29] for the subset of clients which are selected by the local

Bernoulli tests in lines 6-8 of Algorithm 1, and for the clients that

are not selected it is equivalent to aborting immediately before the

Message Phase (this is tolerated trivially by the security proofs

in [29]). Algorithm 7 similarly replicates the Randomness Phase

and Message Phase of [29] in lines 7 and 8 respectively, followed

by submission to 𝑆𝐴 in Algorithm 1 line 10. Finally, Algorithm 5 is

equivalent to the Aggregation Phase of [29].

These elements can be considered an implementation of the

protocol from [29], realizing the functionality FSTAR which we

recapitulate in Figure 8. We make one addition, formalizing the fact

that their protocol enables clients to participate in the Randomness

Phase and then abort before submitting data in the Message Phase.

We use these observations to prove the security of Nebula based on
the Universal Composition paradigm [21], a standard cryptographic

proof technique. Before we proceed to the proof, we will recall

elements of STAR and Nebula that are dissimilar.

https://doi.org/10.48550/arXiv.1101.2604
https://doi.org/10.48550/arXiv.1101.2604
https://doi.org/10.48550/arXiv.cs/0610105
https://doi.org/10.48550/arXiv.1808.01718
https://doi.org/10.48550/arXiv.1709.02753

Nebula: Efficient, Private and Accurate Histogram Estimation CCS ’25, October 13–17, 2025, Taipei, Taiwan

Algorithm 7: Modified DummyDataCreation: Create

groups of dummy data

Input: Threshold 𝜏 , Truncated Shifted Discrete Laplace distribution

TSDLap(·) , DP guarantees (𝜀Unre, 𝛿Unre)
Output: A set of dummy data

1: Dummy = {}
2: Select a client for creating dummy data

3: for 𝑖 = 1, . . . , 𝜏 − 1 do
4: 𝛼 ← TSDLap(𝜆 = 2/𝜀Unre, 𝑡 = 2 + 2/𝜀Unre log(2/𝛿Unre))
5: for 𝑗 ∈ 𝛼 do
6: 𝑥 𝑗 ← DummyObservation()

7: 𝑟 𝑗 = 𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑛𝑒𝑠𝑠𝑆𝑒𝑟𝑣𝑒𝑟 (𝑥 𝑗 , 𝑝𝑝,𝐻 (·))
8: sbm𝑗 , _← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑐𝑟𝑒𝑡𝑆ℎ𝑎𝑟𝑖𝑛𝑔 (𝑥 𝑗 , 𝑟 𝑗 ,Π𝜏,𝑁)
9: Dummy.append({ (sbm𝑗)𝑖 })
10: Return Dummy

The Bernoulli tests in lines 6-8 of Algorithm 1 are not present

in [29] and neither are lines 9-11 of Algorithm 1, which call Al-

gorithm 4 as a subroutine. As previously mentioned, the former

is trivially tolerated by [29]. The latter is equivalent to increas-

ing the number of client inputs received by the STAR function-

ality, which are chosen so that they reveal no information about

the input data of any client. Thus our protocol for Nebula can be

rewritten as: i) 𝑆𝑅 samples a VOPRF keypair (msk, mpk); ii) Clients

{𝐶𝑖 }𝑁𝑖=1 sample 𝑏𝑖 ← Bern(𝑝𝑠); iii) A randomly chosen client 𝐶∗

samples {𝛼𝑖 }𝜏−1𝑖=1
where each 𝛼𝑖 is sampled independently from

𝛼𝑖 ← TSDLap(𝜆 = 2/𝜀Unre, 𝑡 = 2 + 2/𝜀Unre log(2/𝛿Unre)); iv) For
each 𝛼𝑖 , 𝐶

∗
constructs 𝛼𝑖 groups of dummy clients of size 𝑖 with

input (𝜔𝑖, 𝑗 , aux𝑖, 𝑗) for all 𝑗 ∈ 𝛼𝑖 . Each 𝜔𝑖, 𝑗 is a distinct measure-

ment outside the set of client measurements {𝑥𝑖 }𝑁𝑖=1. Call the set
of all dummy clients D; v) 𝑆𝐴, 𝑆𝑅, and client pool {𝐶𝑖 }𝑁𝑖=1 ∪ D call

FSTAR using their respective inputs from above. Assume additional

leakage of the cardinality of each group of inputs 𝑛ℓ ≡ |𝑆ℓ | where 𝑆ℓ
is the set of submissions from C ∪ D which share the same unique

measurement 𝑥ℓ , as in the protocol from [29].

We use this formulation of our protocol to demonstrate that

Nebula realizes the ideal functionality F
Nebula

shown in Figure 2.

This augmented functionality ensures that the output histogram

has the DP guarantees proven in Section 4. Note that we also output

to 𝑆𝐴 the cardinality of each group of inputs provided by C ∪ D
which shares a unique measurement 𝑥ℓ . This is also included in

STAR, but excluded from the ideal functionality and formalized as a

leakage function L. We include it as an output of F
Nebula

since the

method is designed specifically to make this leakage uninformative

using differential privacy.

Now ready to prove the security and correctness of our protocol.

Theorem A.1. (Correctness.) The Nebula protocol is correct with
all but negligible probability.

Proof. Clients perform Bernoulli tests to decide whether to sub-

mit their real data (Algorithm 1), and craft and submit dummy data

(Algorithm 7). Therefore, the set of data received by the aggrega-

tion server in the protocol is equivalent to the inputs specified in

F
Nebula

. The remaining parts of the protocol reduce to performing

the STAR protocol on this modified set of data (Poisson subsam-

pled real data joint with dummy data), resulting in the aggregation

server learning only a DP histogram of revealed submissions and

a DP histogram of unrevealed submissions as proven in our Theo-

rem 4.1. Thus the rest of the proof reduces to the correctness proof

for STAR, which demonstrates correctness except with negligible

probability ([29] Theorem 2). Therefore, Nebula correctly produces

the outputs shown in F
Nebula

(i.e., revealing only the expected DP

histogram to the aggregation server as shown in Figure 2). □

TheoremA.2. (Malicious aggregation server.) The Nebula protocol
is secure against any A that corrupts 𝑆𝐴 , assuming a secure protocol
which realizes FSTAR.

Proof. Given any A, we define a simulator S which interacts

withA and the ideal functionality F
Nebula

as follows: S submits ⊥
toF

Nebula
;S receives fromF

Nebula
the histogramY, and cardinality

of each group of inputs 𝑛ℓ for every unique measurement 𝑥ℓ ; S
simulates FSTAR: when A submits ⊥ to FSTAR, S sends Y back; S
simulates the leakage L by submitting each 𝑛ℓ to A.

S simulates the view ofA. Uncorrupted clients correctly perform

Poisson sampling and dummy data injection locally in the real-

world execution, resulting in a set of outputs to FSTAR which is

sampled from the same distribution as the outputs of F
Nebula

. Since

our security model specifies that clients do not collude with 𝑆𝐴 , we

can assume all clients are uncorrupted whenA corrupts 𝑆𝐴 . So the

simulated and real-world views are statistically indistinguishable.

□

Operations conducted between the clients and the randomness

server 𝑆𝑅 are the same as in STAR [29].

TheoremA.3. (Malicious randomness server.) The Nebula protocol
is secure against any adversaryA that corrupts 𝑆𝑅 , assuming a secure
protocol which realizes FSTAR

Proof. Given any A, we define a simulator S which interacts

with A and the ideal functionality F
Nebula

as follows: simulating

FSTAR, S receives inputs for (msk, mpk) from A; S submits (msk,

mpk) to F
Nebula

and receives {FVOPRF (msk, 𝑥𝑖)}𝑁𝑖=1; S uses (msk,

mpk) to simulate FVOPRF (msk, 𝑥 𝑗) for all dummy clients inD. Call

this set of outputs𝑊 ; S sends {FVOPRF (msk, 𝑥𝑖)}𝑁𝑖=1 ∪𝑊 to A as

the output of FSTAR. This simulates the view of A. □

Theorem A.4. (Semi-honest corrupted clients.) The Nebula proto-
col is secure against any adversaryA that corrupts a subset of clients
𝑇 ⊂ {𝐶𝑖 }𝑁𝑖=1, assuming a secure protocol which realizes FSTAR.

Proof. The simulator takes inputs submitted to FSTAR and sub-

mits them to F
Nebula

. It then returns ⊥ to each client in 𝑇 . This

trivially simulates the view of A.

To show that the joint distribution over inputs and outputs is

statistically indistinguishable for real and ideal world execution, we

recall that clients are corrupted only by semi-honest adversaries in

our security model. Thus we can assume that all corrupted clients

in 𝑇 follow the protocol faithfully. This means that the clients

perform Poisson sampling and dummy data injection correctly

even if they are corrupted in the real-world execution. Thus, the

joint distributions in the real and ideal world executions are the

same. □

	Abstract
	1 Introduction
	2 Problem & Threat Model
	3 Nebula Design
	3.1 Oblivious & Verifiable Randomness
	3.2 Local Data Preparation and Submission
	3.3 Dummy Data Injection
	3.4 Data Aggregation and Recovery

	4 Privacy, Security, Utility and Communication Analysis
	4.1 Privacy Analysis
	4.2 Cryptographic Security
	4.3 Communication Analysis
	4.4 Utility Analysis

	5 Nested-Nebula: a variant for high-dimensional marginal histograms
	6 Experiments
	6.1 Utility Comparison to Existing Works
	6.2 Utility Improvements via Nested-Nebula
	6.3 Nebula is Efficient
	6.4 Nebula is Scalable

	7 Related work
	8 Discussion and Future work
	References
	A Security Proof

