
Yao’s Garbled Circuits:
Recent Directions and Implementations

Peter Snyder
University of Illinois at Chicago

psnyde2@uic.edu

ABSTRACT
Secure function evaluation, or how two parties can jointly
compute a function while keeping their inputs private, is an
active field in cryptography. In 1986 Andrew Yao presented
a solution to the problem called garbled circuits, based on
modeling the problem as a series of binary gates and encrypt-
ing the result tables. This approach was initially treated
as theoretically interesting but too computationally expen-
sive for practical use. However, in the decades since Yao
published his solution, a great deal of work has gone into
both optimizing the protocol for practical use, and further
securing the protocol to make it useful in untrusted scenarios.

This paper provides a thorough explanation of Yao’s origi-
nal protocol and its security characteristics. The paper then
details additions to the protocol to both secure it against
untrusted parties and to make it practical for computation.
Implementations of Yao’s protocol are also discussed, though
the paper’s emphasis is on the underlying enabling improve-
ments to the protocol.

1. INTRODUCTION
Secure function evaluation (SFE) refers to the problem of

how two parties can collaborate to correctly compute the
output of a function without either party needing to reveal
their inputs to the function, either to each other or to a third
party. A common example of this problem is the“millionaires’
problem”, in which two millionaires want to determine who
is richer, without either party revealing how much money
they have[25].

Many solutions have been proposed for SFE. One category
of solution is function specific, and depends on specific prop-
erties of the function being executed to provide security[11].
These solutions, while interesting, are of less general interest,
since they apply to only a limited set of problems.

Another category of solution is general in approach, and
seeks to provide a general solution for SFE by transforming
arbitrary functions into secure functions. Approaches in
this category include homomorphic encryption systems[4]
which allow for arbitrary computation on encrypted data.
Yao’s garbled circuits protocol also fits in this second, general
category.

Yao’s garbled circuits protocol (GCP) transforms any func-
tion into a function that can be evaluated securely by model-
ing the function as a boolean circuit, and then masking the
inputs and outputs of each gate so that the party executing
the function cannot discern any information about the inputs
or intermediate values to the function. The protocol is secure
as long as both parties do not deviate. A full description of

the protocol and the related security definitions are provided
later in this paper.

1.1 History of Protocol
Interestingly, Yao never published his GCP. Several of his

publications discuss approaches to the SFE problem generally,
specifically papers from 1982[25] and 1986[26]. These papers
are broad and theoretical, and do not directly provide a
protocol that could be implemented. Yao first discussed the
garbled circuits approach in a public talk on the latter paper,
as a concrete example of how his broader strategies could
be applied[2]. Only later and by other researchers would the
protocol be documented formally[7], though still crediting
Yao for the approach.

That Yao developed this foundational protocol, but never
published it, presents writers with the tricky question of
what to cite when crediting the GCP approach. The common
convention seems to be to cite Yao’s two papers discussing
his general approach the problem, even though those papers
make no mention of garbled circuits.

1.2 Aims of the Paper
This paper aims to provide a full description of Yao’s GCP

and its security characteristics. This paper also provides
detailed explanations of related work by other researchers to
improve the performance and security of the protocol.

This paper presumes no previous familiarity with cryp-
tography (generally) or Yao’s protocol (specifically) in the
sections explaining the protocol, though the general concepts
of symmetric and public key cryptography are referenced.
Some background in cryptography is assumed in the sections
on security and performance improvements to the protocol.
Formal proofs of the underlying concepts are not discussed
and are left to their original papers.

Some discussion is included of existing implementations of
Yao’s protocol. However, the focus here is on the promises,
improvements and general techniques of the implementations,
and not on implementation specific details, like implementing
programming languages or hardware characteristics. Discus-
sion of the implementations is mainly meant to inform how
the protocol has developed and been improved, as opposed
to a detailed comparison of how different implementations
compare with each other.

1.3 Organization of the Paper
The remainder of the paper is structured as follows. Sec-

tion 2 provides some security definitions used throughout the
rest of the paper. Section 3 discusses oblivious transfer (OT),
its role in the protocol, and a method for achieving OT in a

manner that is compatible with the security guarantees of the
standard version of Yao’s protocol. Section 4 then provides a
full explanation of the Yao’s protocol and how to use garbled
circuits to solve the SFE problem. Section 5 discusses the
security of the protocol and proposed improvements, and
section 6 provides a similar discussion of the performance of
Yao’s protocol. Section 7 briefly describes some implementa-
tions of the protocol, and section 8 concludes.

2. SECURITY DEFINITIONS
This section defines several security-related terms that

are used throughout the paper. The terminology is not
identical throughout the literature, but in most cases has
simple mappings to equivalent terms.

2.1 Required Properties for SFE Protocols
Attempting to abstractly but precisely define the charac-

teristics of a SFE protocol is difficult and can quickly devolve
into a long enumeration of characteristics a SFE system
should not have. Yao instead suggests[26] that a correct sys-
tem should be compared to an ideal-oracle that fulfills three
properties, and that a SFE system is correct if it performs
identically to this imagined ideal-oracle.

This imagined ideal-oracle takes a function to execute (f),
the first party (P1)’s input (iP1) and the second party (P2)’s
input (iP2), executes the given function with the values
provided, and then returns the function’s output to both
parties (u← f(iP1, iP2)).

2.1.1 Validity
A SFE system must perform indistinguishably from an

ideal-oracle in being able to correctly compute the desired
function. Note that this does not guarantee a correct result,
since the function being securely computed could itself con-
tain a logic error, nor does it guarantee the production of
any answer, since one party could submit an input outside
the domain of the function. This validity requirement merely
requires that the secure version of the function produce the
same result as the insecure (or “pre-secured”) version of the
function being evaluated, given the same inputs.

2.1.2 Privacy
A SFE system must also perform indistinguishably from

an ideal-oracle in preventing P2 from learning about iP1,
provided P1 follows the protocol. The same must also hold
for preventing P1 from learning about iP2.

Note that that this definition of privacy does not guarantee
that P1 is not able to learn P2 ’s input by examining the
function’s result (if the function being executed allows for
such reverse engineering). If, for example, the function
being evaluated securely is multiplication, the fact that P1
can learn iP2 through u/iP1 does not violate this privacy
property; P1 could learn iP2 given an ideal-oracle too.

This does not imply that SFE cannot be used to protect
the privacy of each parties’ inputs, only that some functions
(such as integer multiplication) do not make sense in the
context of SFE.

2.1.3 Fairness
Finally, a SFE system must do as well as a ideal-oracle

in preventing one party from learning the function’s result
without sharing it with the other party. In order words, P1

should not be able to learn u while denying it to P2 , nor
vise-versa.

2.2 Adversary Models
In addition to defining the properties a SFE protocol should

have, it is necessary to define under which conditions those
properties must hold. While the relevant literature contains a
variety of terms for an adversary’s willingness to deviate from
the protocol, for different gradations between 100% honest
and 100% dishonest, this paper generalizes the types of
attackers into two categories, at the extremes of the attacker
spectrum.

A SFE protocol is said to be secure under a given adver-
sary model if the SFE protocol can provide the three above
mentioned security properties against any party following
the assumptions of the adversary model.

2.2.1 Semi-Honest
A semi-honest adversary is assumed to follow all required

steps in a protocol, but will look for all advantageous infor-
mation leaked from the execution of the protocol, such as
intermediate values, control flow decisions, or values deriv-
able from the same[5]. Additionally, semi-honest adversaries
are assumed to be selfish, in that they will take any steps
that will benefit themselves if the benefit is greater than the
harm, within the constraints imposed by the protocol.

2.2.2 Malicious
A malicious adversary is assumed to arbitrarily deviate

from the protocol at any point in any way that might benefit
them[5]. This includes proving deceptive or incorrect values,
aborting a protocol at anytime, or otherwise taking any
steps that could reach a desirable outcome. This is the most
difficult type of adversary to secure against; a system that
is secure against malicious adversaries is necessarily secure
against semi-honest adversaries.

2.3 Hash Function Assumptions
This paper makes the assumption that hash functions gen-

erally, or at least some existing efficient hash function, model
a random oracle. More formally, the paper assumes that
a hash operation can be treated as a uniformly distributed
mapping from f({0, 1}∗)→ {0, 1}h, where h is the length of
the produced message digest. This assumption implies that
there is no correlation between the output of a hash function
and its input. Put differently, the assumption implies that
nothing can be learned about the input to a hash function
by examining its output.

This assumption is a common one throughout the field
and discussed research[22]. While some research mentions
alternate constructions or other caveats if this random oracle
assumption does not hold, these are are rarely the main
assumption in the work, and thus are not discussed further
in this paper.

3. OBLIVIOUS TRANSFER
OT refers to methods for two parties to exchange one-out-

of-several values, with the sending party blinded to what
value was selected, and the receiving party blinded to all
other possible values that could have, but were not, selected.

While OT and SFE are approaches to distinct (though
related) problems, understanding Yao’s GCP and its security

properties requires some understanding of OT. It’s a cryp-
tographic primitive and a building block that Yao’s GCP
builds on. This section provides a brief overview of the OT
problem and a simple OT protocol that is secure against
semi-honest adversaries. The role of OT in Yao’s protocol
is discussed in section 4, and a more secure OT protocol is
included and explained in section 5.

3.1 Problem Definition
A general form of OT is 1-out-of-N oblivious transfer, a two

party protocol where P1 , the sending party, has a collection
of values. P2 is able to select one of the values from this set
to receive, but is not able to learn any of the other values.

More formally, a 1-out-of-N oblivious transfer protocol
takes as inputs a set of N values from P1 , and an index i
from P2 , where 0 ≤ i < |N |. The protocol then outputs
nothing to P1 , and Ni to P2 in a manner that prevents P2
from learning Nj for all values of j 6= i.

A special case of the above is the 1-out-of-2 oblivious
transfer problem, where N is fixed at 2. Here P1 has just
two values, and P2 is accordingly limited to i ∈ {0, 1}. All
versions of Yao’s GCP discussed in this paper rely on 1-out-
of-2 oblivious transfer protocols.

3.2 Example 1-out-of-2 Protocol
The problem of 1-out-of-2 OT was first addressed by

Rabin[23] in 1981 using an interactive approach with multiple
rounds of message passing, but was later adapted into an
offline approaches using an techniques similar to the Diffie-
Hellman key exchange protocol[3].

The following protocol[15] is a simple 1-out-of-2 OT pro-
tocol that is secure against semi-honest adversaries. It is
included here to assist in the next section’s explanation of
how the full GCP works, and to provide a easy-to-understand
example of OT to build from later.

Protocol 1 Semi-Honest 1-out-of-2 Oblivious Transfer

1: P1 has a set of two strings, S = {s0, s1}.
2: P2 selects i ∈ {0, 1} corresponding to whether she wishes

to learn s0 or s1.
3: P2 generates a public / private key pair (kpub, kpri),

along with a second value k⊥ that is indistinguishable
from a public key, but for which P2 has no corresponding
private key to decrypt with.

4: P2 then advertises these values as public keys (kpub0 , kpub1)

and sets kpubi = kpub and kpubi−1 = k⊥.
5: P1 generates c0 = E

k
pub
0

(s0) and c1 = E
k
pub
1

(s1), and

sends c0 and c1 to P2 .
6: P2 computes si = Dkpri(ci).

Note that the protocol is secure by the semi-honest defini-
tion. As long as no party deviates from the protocol, P2 is
able to recover the desired string si but is not able to recover
the other value, si−1. Similarly, P1 never learns i.

4. YAO’S PROTOCOL
This section provides a complete description of Yao’s gar-

bled circuits protocol and how the protocol incorporates OT.
Though the protocol described here was first published by
Goldreich, Micali, and Wigderson[7], the terminology used
in this section follows more recent publications[10]. In all

cases though the concepts are similar and there is a direct
mapping between the two.

The protocol is presented here twice, first in a less formal
format that includes some reasoning for each step in the
protocol, and a second time, fully describing each step taken
by both parties. The former description is intended to make
the latter one easier to follow.

Protocol 2 Yao’s Garbled Circuits Protocol

1: P1 generates a boolean circuit representation cc of f that
takes input iP1 from P1 and iP2 from P2 .

2: P1 transforms cc by garbling each gate’s computation
table, creating garbled circuit cg.

3: P1 sends both cg and the values for the input wires in
cg corresponding to iP1 to P2 .

4: P2 uses 1-out-of-2 OT to receive from P1 the garbled
values for iP2 in cg.

5: P2 calculates cg with the garbled versions of iP1 and iP2

and outputs the result.

4.1 Intuitive Description of the Protocol
This section attempts to provide a high level explanation

of how Yao’s protocol works, as well as some of the reasoning
behind its construction. It is included to make the following
detailed description of the protocol easier to follow.

P1 and P2 wish to compute function f securely, so that
their inputs to the function remain secret. They begin doing
so by modeling f as a boolean circuit. P1 then “garbles”
the circuit by replacing all boolean values in the circuit
with pseudo-random looking strings, and then keeping this
mapping secret. This is done for the input and output wires
of every gate in the circuit, with the exception of the circuits
output gates; the values of these gates’ output wires are left
un-garbled.

P1 then replaces each bit of his input with the pseudo-
random string that maps to that bit’s input on the corre-
sponding input wire into circuit. P1 then sends the garbled
circuit and his garbled input to P2 .

P2 receives both the garbled circuit and P1 ’s garbled
input. However, since all input wires into the circuit have
been garbled and only P1 has the mapping between the
garbled values and the underlying bits, P2 does not know
what values to input into the circuit to match her input bits.
In other words, for each input wire into the circuit, P2 can
select one of two random strings to input (corresponding to
0 or 1), but does not know which of these correspond to her
desired input bit.

In order to learn which pseudo-random string to select
for each of P2 ’s input wires, P2 engages in a 1-out-of-2
OT with P1 for each bit of P2 ’s input. For each round of
the OT, P2 submits the bit she wishes to learn, receives the
corresponding string. Note that the properties of OT prevent
P1 from learning about P2 ’s input in this process.

Once P2 has received all of the strings corresponding to
her input into the circuit, she holds everything needed to
compute the output of the circuit: her garbled inputs, P1 ’s
garbled inputs, and the garbled circuit itself. Further, she
has obtained these values without P1 learning her inputs,
nor P2 learning P1 ’s inputs.

P2 then begins to compute the circuit by entering the
pseudo-random strings that correspond to each bit of her
and P1 ’s input into the corresponding input wire and using

the resulting garbled output string as an input to the next
gate. P2 may try to learn information about P1 ’s inputs by
watching the execution of the circuit. The protocol prevents
P2 from doing so though the manner that each computation
table for each gate was constructed.

Recall that the computation table for every gate in the
circuit was constructed so that each pair of inputs produces
a output string that represents the correct boolean result,
but which appears pseudo-random to P2 . In other words,
instead of mapping from {0, 1} × {0, 1} → {0, 1}, all gates
in the circuit become a function mapping two random look-
ing strings to another uniformly distributed pseudo-random
string, or f({0, 1}|k|, {0, 1}|k|) → {0, 1}|k|, where |k| is the
size of the value returned by the hash function. Since P2
never learns the mapping between strings used in the table
and their underlying boolean values, P2 learns nothing by
watching the outputs of each gate.

Recall that the values returned by the output gates in the
circuit are not obscured. This results in P2 learning the
value of f(iP1, iP2) once the computation has finished. P2
then completes the protocol by sharing this computed value
with P1 .

4.2 Detailed Description of the Protocol
This section provides a more precise explanation of each

step of Yao’s protocol, specifying how each step of the is
carried out by both parties. The numbering of subsections
here followings the numbering used in protocol 2.

4.2.1 Generating A Boolean Circuit Representation
of the Function

Before it can be securely evaluated, the function f must
be converted into an equivalent boolean circuit c so that
∀x, y → f(x, y) = c(x, y). The strategies for optimally doing
so may be function specific, and are beyond the scope of
the protocol. For the purposes of this paper though, it
is sufficient to note that there exists a mapping from any
polynomial time function with fixed sized inputs to a boolean
circuit that calculates the same output[7].

4.2.2 Garbling Truth Tables
Once P1 has constructed a boolean circuit representation

c of f , the next step is to garble the truth table for each
gate in c, generating a garbled version of the circuit, cg (ie
c→ cg).

To see how P1 does this, first consider a single logical OR
gate, gOR

1 , represented in figure 1. Initially P1 generates the
values for this gate as normal, resulting in the truth table in
figure 2a. P1 then generates a key for each possible value for
each wire in the gate. This results in 6 keys being generated,
one for each of the two possible boolean values on each of
the three wires in the gate.

P1 then encrypts each entry in the table for the output
wire using the keys used for the corresponding inputs. The
gate identifier serves as a nonce and is only included in
this construction to ensure that the same values are never
encrypted twice in the circuit. P1 then randomly orders
the rows the table, further obscuring the underlying boolean
values1).

This encryption plays two important roles in the proto-
col. First, since the output of each encryption operation is

1To simplify the presentation, this step is not shown in figure
1.

Figure 1: Garbling a single gate

w0 w1 w2

0 0 0
0 1 1
1 0 1
1 1 1

(a) Original Values

w0 w1 w2 garbled value

k00 k01 k02 H(k00||k01||g1)⊕ k02
k00 k11 k12 H(k00||k11||g1)⊕ k12
k10 k01 k12 H(k10||k01||g1)⊕ k12
k10 k11 k12 H(k10||k11||g1)⊕ k12

(b) Garbled Values

Figure 2: Computation table for gOR
1

assumed be random (i.e. the hash function is assumed to
perform like a random oracle), it removes any correlation
between the underlying truth values in the table and the re-
sulting garbled values. Even though this gate produces three
identical boolean values, the garbled values all uniformly
distributed, revealing nothing about the underlying value
being encrypted.

Second, encrypting the output keys under the input keys
prevents P2 , the circuit evaluator, from playing with the
circuit and considering other inputs other than those provided
by P1 . P2 can only obtain one of the output keys from the
table, since she will only have, at most, the necessary input
keys to the gate to decrypt one value for the output wire.

Once P1 has garbled the values for one gate, he can con-
tinue the process to compose an arbitrarily large circuit.
Figure 3 shows how multiple garbled gates can be composed
together into a simple circuit, and the how the keys from
each gate are carried forward into the next gate, blinding the
computing party from the learning the intermediate values
being calculated.

The only gates in the circuit that do not need to be garbled
are the output gates, or gates with wires that do not serve as
input wires to another gate. The output values from these
gates can remain unobscured since they are outputting the
final result of the circuit, a value which P2 is allowed to
learn.

4.2.3 Sending Garbled Values to P2

Once P1 has finished generating the garbled circuit, he
then needs to garble his input to the function, creating
a mapping of iP1 to its garbled equivalents. P1 begins
this process by replacing the first bit of his input with the
corresponding key for that input wire in the circuit. For

Figure 3: Composing several gates into a simple circuit

w3 w4 w5

0 0 0
0 1 0
1 0 0
1 1 1

(a) Original Values

w3 w4 w5 garbled value

k03 k04 k05 H(k03||k04||g2)⊕ k05
k03 k14 k05 H(k03||k14||g2)⊕ k05
k13 k04 k05 H(k13||k04||g2)⊕ k05
k13 k14 k15 H(k13||k14||g2)⊕ k15

(b) Garbled Values

Figure 4: Computation table for gAND
2

w2 w5 w6

0 0 0
0 1 1
1 0 1
1 1 0

(a) Original Values

w2 w5 w6 garbled value

k02 k05 k06 H(k02||k05||g3)⊕ k06
k02 k15 k16 H(k02||k15||g3)⊕ k16
k12 k05 k16 H(k12||k05||g3)⊕ k16
k12 k15 k06 H(k12||k15||g3)⊕ k06

(b) Garbled Values

Figure 5: Computation table for gXOR
3

example, P1 ’s first bit was input into w0, and the value of
i0P1 was 1, P1 would select k10 to be the first value in his
input to the garbled circuit. P1 then repeats this procedure
for the remaining bits in his input, creating P1 ’s garbled
input. P1 then sends the garbled circuit cg and his garbled
input to P2 .

4.2.4 Receiving P2’s Input Values through OT
P2 receives cg and P1 ’s garbled input, but still needs

the garbled representation of her own input to compute the
circuit. Recall that P1 has the garbled values for all of P2 ’s
input wires, but has no knowledge of what values correspond
to P2 ’s true input. P2 , inversely, knows the bits of her own
input, but not the corresponding keys for her input wires in
cg.

P2 maps the first bit of her input to its corresponding
garbled value by engaging in 1-out-of-2 OTs with P1 , where

P1 ’s inputs are (k01 , k
1
1), and P2 ’s input is 0 or 1, depending

on the first bit of P2 ’s input. P2 performs additional OTs
with P1 for all values 0 < i < |iP2| to achieve her full garbled
input into cg.

4.2.5 Computing the Garbled Circuit
Once P2 has both garbled inputs and the garbled circuit,

she can straight forwardly compute the circuit. For each
input gate, P2 looks up the corresponding value from P1 and
P2 ’s garbled input values and uses them as keys to decrypt
the output value from the gate’s garbled truth table. Since
P2 does not know which output key these two input keys
correspond to, P2 must try to decrypt each of the four output
keys. If the protocol has been carried out correctly, only one
of the four values will decrypt correctly. The other three
decryption attempts will produce ⊥. The newly decrypted
key then becomes an input key to the next gate.

P2 continues this process until she reaches the output
wires of the circuit. Each of these wires output a single,
unencrypted bit. P2 then reassembles the output bits and
has the correct solution for the f encoded by cg. P2 completes
the protocol by sending the output of the circuit to P1 .

5. PROTOCOL SECURITY
Yao’s protocol is designed to provide SFE against semi-

honest adversaries. These security guarantees do not carry
over against malicious adversaries. This is a serious limita-
tion for making the protocol practical; there are relatively
few real-world scenarios where you do not trust the other
party to see your inputs to a function, but do trust them
to forgo the opportunity to discover those same inputs by
deviating from the protocol.

Much work has been conducted to extend Yao’s protocol
to be secure against malicious adversaries. This work can
generally be classified into three areas, 1) creating 1-out-of-2
OT protocols that are secure against malicious adversaries,
2) ensuring that the circuit constructing party correctly
constructs the garbled circuit, and 3) preventing P1 from
gaining an advantage by sending P2 corrupt values for her
input.

Finally, some discussion is given to the open problem of
how to guarantee fairness in the malicious case, by ensuring
P2 returns output to P1 at the end of the protocol.

5.1 Securing the OT Protocol
The 1-out-of-2 OT protocol described in the section 3

is trivially vulnerable in the malicious case. Instead of
generating ((kpubb , kprib), (k⊥b−1,⊥)), P2 could easily generate
two valid public / private key pairs, allowing her to recover
both values sent by P1 . Applied to Yao’s protocol, this
would allow P2 to learn both the garbled versions of the
0 and 1 values for all of her input bits. P2 having these
additional keys would allow P2 to decrypt additional values
throughout the circuit, violating the privacy requirement
of SFE. Others have detailed several additional ways that
using an insecure-in-the-malicious-case OT protocol can be
exploited by an attacker[12].

As previously discussed, OT is a distinct, though related,
field to both SFE and Yao’s protocol. As such, this section
does not attempt to assess the state-of-the-art in OT. A
variety of other approaches to malicious-case secure 1-out-
of-2 OT protocols exist[19, 12, 7, 20], each with their own
requirements, computation costs and underlying security

assumptions. The below protocol[1]2 is included to show
that efficient 1-out-of-2 OT with malicious adversaries is
possible, and that researchers have used it and equivalent
OT protocols to make Yao’s protocol secure in the malicious
case.

Protocol 3 Malicious-Secure 1-out-of-2 Oblivious Transfer

1: P1 has a set of two strings, S = {s0, s1}.
2: P1 (sender) and P2 (receiver) agree on some q and g

such that g is a generator for Z∗q .
3: P1 selects a value C from Z∗q such that P2 does not

know the discrete log of C in Z∗q .
4: P2 selects i ∈ {0, 1} corresponding to whether P2 wants
s0 or s1. P2 also selects a random 0 ≤ xi ≤ q − 2.

5: P2 sets βi = gxi and βi−1 = C � (gxi)−1. (β0, β1) and
(i, xi) form P1 public and private keys, respectively.

6: P1 checks the validity of P2 ’s public keys by verifying
that β0 • β1 = C. If not, P1 aborts.

7: P1 selects y0, y1 such that 0 ≤ y0, y1 ≤ q − 2, and sends
P2 a0 = gy0 and a1 = gy1 .

8: P1 also generates z0 = βy0
0 , z1 = βy1

1 and sends P2
r0 = s0 ⊕ z0 and r1 = s1 ⊕ z1.

9: P2 computes zi = axii and then receives si by computing
si = zi ⊕ ri.

The purpose of many of the steps in the protocol are
not explicit in the original work[1], so some explanation
is provided below. Specifically, in step 5 P1 checks that
β0 • β1 = C to prevent P2 from being able to decrypt
under both β0 and β1, and to force P2 to choose one or the
other. As long as the assumption that P2 does not know the
discrete log of C holds, then it follows that P2 cannot know
the discrete log of both β0 and β1.

Steps 7, 8 and 9 function similarly to a Diffie-Hellman key
exchange. However, in step 9 it may not be immediately
obvious why P2 is able to reconstruct zi to decrypt ri and
receive si. To understand why, recall that ai is equal to gyi ,

making ayii = gy
xi
i = gyi•xi .

Similarly , recall that zi was generated from Byi
i and that

Bi = gxi . This makes Byi
i = gx

yi
i = gxi•yi . Since P2 is able

to construct the same pad P1 used to mask si, P2 can undo
the mask and receive si.

5.2 Securing Circuit Construction
A second way a malicious adversary could exploit Yao’s

protocol to learn information about the other party’s input
is by P1 creating and garbling a circuit for a function other
than the function expected by P2 . Trivially, P1 could send
P2 a garbled circuit that echos back P2 ’s input. More
reasonably, P1 could construct the circuit to output a value
that leaks information about iP2 in some less obvious manner
not known to P2 . It is therefor necessary for P2 to ensure
that the garbled circuit she evaluates is actually modeling
the expected function.

5.2.1 Zero-Knowledge Proofs
Two different general strategies for achieving this assurance

have been promoted. The first approach has P1 generate a

2This protocol is a slightly modified version of the protocol
presented in [1]. It incorporates a change suggested by [19]
to remove the reliance on a external zero knowledge proof or
other out-side-the-protocol source for C.

zero knowledge proof of the garbled circuit’s correctness, and
then sends this proof to P2 along with the garbled circuit
and P1 ’s garbled inputs[7, 6].

This zero-knowledge strategy dates back to earlier in the
history of Yao’s protocol, when the protocol served more as
proof that SFE was possible and less as a practical tool for ac-
tually achieving SFE. More recent, implementation-focused
work on Yao’s protocol has treated the zero-knowledge proof
approaches as too expensive for practical use[16, 18, 17], and
thus this strategy is not discussed further in this paper.

5.2.2 Cut-and-Choose
Instead, recent work on Yao’s protocol has focused on a

cut-and-choose strategy for securing circuit construction[17].
Work on this approach has developed in an arms-race fash-
ion, with proposals being made, other researchers revealing
shortcomings in the given strategy, and a revised strategy
being developed to address the given weakness. Several
rounds of this propose-attack-revise cycle are discussed be-
low, to better explain the role of each proposed improvement.

Standard Cut-and-Choose
Under this approach, P1 constructs m versions of the

circuit, each structured identically but garbled differently so
that the keys for each gate in each circuit are unique. P1
does the same for his inputs to each of the m garbled circuits.
Additionally, P1 generates a “commitment” for each of his
garbled inputs, which for simplicity can be understood to be
a simple hash of the inputs3.

P1 then sends each of these pairs of garbled circuits and
associated input commitments to P2 , who selects m − 1
versions of the circuit to verify. P1 de-garbles each of the
m − 1 selected circuits, so that P2 can see the underlying
circuit with the now unobscured boolean values in each gates’
computation table. P2 can then verify that each of the
revealed circuits are constructed correctly and as expected.

If everything looks correct to P2 she will continue with the
computation by receiving P1 ’s garbled inputs, checking that
they match their corresponding, previously sent commitment
(again, most simply thought of as checking that the hash
of the received garbled inputs matches the previously sent
hash), and then proceed with Yao’s protocol as normal. This
reduces the chances of P1 tricking P2 into computing a
corrupted circuit to 1/m. This protocol is described more
formally in protocol 4.

3Though several more secure methods of committing are
mentioned in [16], a simple hash function is used here to
simplify the description of the cut-and-choose approach here,
and commitment schemes in general throughout this paper.
A more secure approach is described in [9].

Protocol 4 Securing Circuit Construction With Cut-and-
Choose

1: P1 generates m garbled versions of the circuit c, along
with a corresponding garbled version of his input, called
Xi for 0 ≤ i < m.

2: P1 uses hash function H to generate commitments to
each garbled input, COMi = H(Xi) for 0 ≤ i < m.

3: P1 sends P2 m garbled circuits and COM such that
|COM | = m.

4: P2 selects 0 ≤ j < m and P1 un-garbles all circuits
except the jth.

5: P2 inspects all m − 1 circuits to check that they are
correctly formed. If not, P2 aborts.

6: P2 receives P1 ’s garbled inputs to circuit j and confirms
that P1 did not change his inputs by verifying COMj =
H(Xj). If not, P2 aborts.

7: Otherwise, P2 receives the continues with Yao’s protocol
as normal.

Further Securing Cut-and-Choose
However, for many applications one may wish for a stronger

guarantee against executing a malicious circuit from P1 .
Lindell and Pinkas[16] discovered that P1 ’s odds of success
can be dramatically reduced without the overhead of needing
to generate additional circuits by altering the cut-and-choose
strategy slightly.

Instead of P1 revealing m− 1 circuits, Lindell and Pinkas
have P2 select only m/2 circuits to be revealed. P2 computes
the remaining m/2 circuits and takes the majority result.
Under this construction, a malicious P1 would only succeed
in having P2 output a corrupt result if

1. P1 constructs more than m/4 of the circuits corruptly,
and

2. None of the corrupt m/4 circuits are among the m/2
circuits P2 selected to be revealed.

Lindell and Pinkas measure P1 ’s chance of success in such
an attack at 2−0.311m, where m is the number of circuits
generated[16].

Majority Result as a Defense Against a Malicious
Circuit

An immediate question that comes out of the above ap-
proach is why P2 should take the majority result of the
computed m/2 circuits, instead of immediately aborting
when encountering the first corrupt circuit, especially given
that computing a garbled circuit is an expensive operation.
The reason is that, were P2 to abort if all circuit outputs
were not identical, she would become vulnerable to a different
attack from P1 .

Consider the case where P1 constructs all circuits correctly,
with a single exception. This corrupt circuit outputs the
correct value of the function ⊕’ed with the first bit of P2 ’s
input. By observing whether P2 evaluates all m/2 evaluation-
circuits, P1 learns the first bit of P2 ’s input.

Figure 6 provides a full explanation of how P1 performs
this attack. The first column depicts the first bit of the
correct value returned by f , and the second column shows
the first bit of P2 ’s input. The third column shows the
first bit of the value returned by P1 ’s malicious circuit, and
column four describes the value P2 returns from evaluating
the entire m/2 set of circuits (or ⊥ if P2 aborts). Finally,

f0 iP20 f0 ⊕ iP20 P2 returns P1 learns
0 0 0 0 iP20 = 0
0 1 1 ⊥ iP20 = 1
1 0 1 1 iP20 = 0
1 1 0 ⊥ iP20 = 1

Figure 6: Using a corrupted circuit to learn first bit of P2 ’s
input

column five shows what P1 is able to learn about P2 ’s input,
without having access to the first three columns of the table.

Further Work Ensuring Consistent Inputs From P1
Lindell and Pinkas’s[16] solution of having P1 provide m

versions of the garbled circuit succeeds in providing P2 with
a high degree of confidence that P1 has not corrupted any cir-
cuits. However, it leads to another problem, of ensuring that
P1 provides the same input to each of the circuits P2 evalu-
ates. Solutions to this problem involve additional, involved
protocols[16] or rely on other areas of cryptography[24] that
are beyond the scope of this paper. More discussion of this
problem, as well as possible solutions to it, are provided by
other work[14].

5.3 Securing Against Corrupt Inputs
A third area where a malicious party can exploit the origi-

nal construction of Yao’s protocol is in the values P1 returns
to P2 in the 1-out-of-2 OT step. Recall that this OT step
is taken to prevent P1 from learning whether P2 is request-
ing the garbled value for a 0 or a 1 bit in her input. The
protections given in the previous two subsections provide no
security against this attack. Subsection 5.1 only addresses
ensuring that P1 cannot learn P2 ’s inputs during the OT
step, not that these inputs cannot be leaked elsewhere in
the protocol. Subsection 5.2 provides P2 guarantees that
the circuits being evaluated are not corrupt, but provides no
guarantees that the inputs to those circuits are not corrupt.

P1 can exploit this weakness in the protocol to gain infor-
mation about P2 ’s input in the following manner. Instead
of returning P2 the correct garbled values for each bit of
her input, P1 returns the correct garbled value for 0, and a
corrupt value for 1. P1 can then learn whether P2 received
the 0 or 1 value by observing if P2 aborts while computing
the circuit. If P2 received the 0 value, she will be able to
compute the circuit as normal; if P2 received the 1 value,
she will not be able to compute the circuit and will be forced
to abort. Either way, P1 is able to learn the value of a bit
of P2 ’s input.

Lindell and Pinkas[16] provide a method of securing the
protocol against this attack. Their technique is depicted in
figure 7. The defense works by adding s|iP2| input bits to
the circuit, where s is a chosen security parameter. Each of
P2 ’s input bits is replaced by the result of XOR of s new
input bits, each chosen by P2 from P1 through the same
OT protocol. The circuit is also augmented to reflect these
new input wires and XOR gates. This step of indirection
gives P2 2s−1 ways to receive her true input bits from P1 ,
and prevents P1 from gaining any knowledge about P2 ’s
underlying input bit by corrupting the augmented, XORed
inputs.

Figure 7: Securing against P1 providing malicious inputs
through s new ⊕ gates

Note that this construction does not prevent P1 from forc-
ing P2 to abort when executing the circuit, it only prevents
P1 from learning anything about P2 ’s input.

5.4 Ensuring P2 Returns At All
One remaining problem with Yao’s protocol in the mali-

cious setting is how to ensure P2 returns to P1 any output
value from the function. There is no clear method to prevent
P2 from maliciously aborting the protocol early, right after
computing the output of the garbled circuit, but right before
sending the output to P1 . That this problem is still open
means that the fairness principle Yao described for SFE
cannot be guaranteed in the malicious setting.

As a second best option, much work has been done to
ensure that if P2 does output a value, it is the correct com-
putation returned by the function[24]. Another possibility
though is that, until a solution to this problem is found,
Yao’s protocol is only appropriate in the malicious setting
where the inputs to the function need to be kept private,
but the output does not. An example of such a scenario is
a secure voting systems. However, this restriction clearly
limits the number of problems for which Yao’s protocol is
appropriate.

6. PROTOCOL PERFORMANCE
Yao’s protocol gives a polynomial time solution for the SFE

problem, both in the semi-honest and malicious cases (once
the adjustments discussed in section 5 are made). However,
while Yao’s protocol is by this definition “efficient”, it is also
costly, and for many problems prohibitively so. For example,
Kreuter, Shelat and Shen[14] found that computing the edit
distance of two 4095-bit strings required a circuit of over 5.9
billion gates and several hours of time, even with a highly
optimized circuit.

A great deal of work has been done to make Yao’s protocol
less expensive to execute. This work broadly falls into three
categories: 1) communication optimizations that reduce the
amount of information that must be shared between the two
parties, 2) execution optimizations that that allow for the
same number of gates to be executed in a shorter amount of
time, and 3) circuit optimizations that reducing the number
of gates needed to compute a function.

Optimizations do not always cleanly fall into only one of
these categories, and improvements in one area often have
spill over benefits in another. For example, reducing the
number of gates needed to compute a circuit also reduces
the number of gates that need to be communicated between
parties. The following categorization is more meant to pro-
vide an intuition about the main role of each optimization,
and less a strict taxonomy of each contribution.

6.1 Communication Optimizations
The communication costs of transmitting a garbled circuit

from P1 to P2 dwarfs all other communication related costs
in Yao’s protocol4. To see why, recall that circuits can grow to
contain billions of gates, and that each wire connecting each of
these gates is represented by four multi-byte strings, meaning
each garbled circuit can be gigabytes in size. This problem is
made worse when considering the protocol in the malicious
setting, where the cut-and-check strategy requires P1 to send
many copies of the garbled circuit to P2 . Minimizing the
amount of information that must be communicated between
the parties in the protocol is therefor a significant issue in
making Yao’s protocol practical.

6.1.1 Random Seed Checking
One solution to this problem was presented by Goyal, Mo-

hassel and Smith[8]. Their technique consists of two modifi-
cations that together significantly reduce the communication
costs of Yao’s protocol.

First, instead of having P1 assign values for each wire
in the circuit randomly, P1 selects a random seed for each
garbled version of the circuit, then uses that random seed
to deterministically generate each of the the pseudo-random
values used in the circuit.

Second, instead of sending P2 m copies of the garbled
circuit during the cut-and-check phase, P1 instead sends P2
“commitments” for each version of the circuit. P2 chooses the
m/2 circuits for P1 to reveal. Instead of sending complete
versions of each garbled circuit to P2 , P1 sends the random
seeds used for each selected circuit, along with any structural
information P2 needs to generate the garbled circuit from the
random seed. P2 can then generating the garbled circuit her-
self, using the random seed to duplicate the pseudo-random
values P1 generated.

Once P2 has reconstructed a version of the garbled circuit
that she knows to be correct using the random seed, she then
checks that P1 ’s commitments for each circuit are correct
(loosely, by hashing each random-seed generated circuit and
seeing if it matches the corresponding commitment). Finally,
P1 sends P2 the remaining m/2 circuits for P2 ’s evaluation.

This technique reduces the communication overhead of the
protocol by approximately 1/2, since the commitments P1
sends are constant in size and much much smaller than the
size of a circuit.

4For all but the most trivial functions.

6.2 Execution Optimizations
Another area of optimization consists of techniques for

reducing the number of resources, both in terms of time and
computation power, needed to evaluate one or more garbled
circuits. Optimizations in this section deal with how two
parties can securely evaluate a garbled circuit more efficiently
without needing to alter the structure of the circuit.

6.2.1 Fast Table Lookups
The fast table lookups5 technique speeds up P2 ’s evaluation

of a circuit by removing the need for P2 to attempt to decrypt
each row of each gate’s garbled truth table until she finds a
value that decrypts correctly. Instead, the circuit constructor
adds an additional bit to the end of each garbled output
value. This additional bit serves as half of an index into the
next gate’s garbled truth table. Since each garbled truth
table contains four rows, and each gate has two input wires
(each with one index bit), combining the index bits from
both input values can uniquely identify which of the four
rows in the next gate’s garbled truth table the input values
decrypt.

Note that since the order of the rows in each garbled truth
table is randomized during construction, these index values
do not reveal any information about the underlying values,
and thus do not affect the security of the the system.

Further note that the approach described above is func-
tionally equivalent to the method described in[17], but just
described from opposite direction. Milkhi et al. decide the
order of the entries in the garbled truth table based on the as-
signed index bits on each input value. The above description
achieves the same outcome in reverse by randomly ordering
the garbled truth table and then assigning the correct index
bits to the values of the input strings6.

6.2.2 Pipelined Circuit Execution
Garbled circuits for even simple functions can grow ex-

tremely large, making them difficult to store in memory for
both the generating and computing party, as well as time
consuming to securely evaluate (since P2 waits idle in the
protocol while P1 garbles the circuit). Huang, Evans, et
al.[11] realized that the garbling and executing processes
could be partially parallelized, with P1 sending P2 the gar-
bled gates as quickly as he is able to prepare them, and P2
continuing to compute as long as she has holds at least one
gate for which she has inputs for.

This technique has two benefits. First, it prevents either
party from needing to keep an entire circuit in memory
(though the optimal strategy for minimizing what subset of
the circuit must be kept in memory is an open problem[14]),
and second, it roughly reduces the time needed to compute
a garbled circuit from tgarble + tOT + tevaluate to
max(tgarble, tevaluate) + tOT .

The above construction works in the semi-honest case, but
seems unworkable in the malicious case. Recall that securing
the protocol in the malicious case is done with the cut-and-
choose technique, where P1 creates many garbled versions
of the circuit and P2 selects a subset to be un-garbled. This

5This name for the technique comes from[11], though versions
of it are in work at least as early as[17].
6The latter approach was used because it lends itself better
as an addition to the standard protocol, while the [17] de-
scription requires working into the initial construction of the
protocol.

would seem to require that P1 hold all m circuits simul-
taneously. The previously discussed random seed checking
approach similarly seems to make this pipelining and parallel
execution strategy impossible, since it seems to require P1
to hold all m copies of the circuit until P2 has made her
selection of circuits to verify.

A method for achieving the memory and execution time
improvements of this pipelined circuit execution technique
in the malicious case was developed by Kreuter, shelat and
Shen[14]. Their solution is to have P1 generate each garbled
circuit twice, once before P2 selects which circuits to verify,
and then again after P2 has made her choices.

In the first phase, P1 generates each garbled circuit, gen-
erates a commitment for it, saves the generating random
seed, and the discards the circuit before generating the next
circuit and commitment.

In the second phase, once P2 has selected which m/2 cir-
cuits to evaluate, P1 can reconstruct each garbled circuit,
one-at-a-time, and send them to P2 . P2 can, in turn, eval-
uate each circuit as she is receiving it, as she would in the
semi-honest case. This achieves the intended optimization
of neither party needing to store more than one circuit at
a time, or hold an entire circuit in memory, without giving
up the communication improvements of the random seed
checking technique.

6.3 Circuit Optimizations
A straight forward way of reducing the cost of Yao’s pro-

tocol is to reduce the size of the garbled gates that must be
evaluated. This section discusses several strategies that have
been used to reduce the number of garbled values needed in
a garbled circuit.

6.3.1 Circuit Simplification
Reducing the number of gates in the pre-garbled circuit

trivially reduces the number of garbled gates that need to
be evaluated later on. This can be though of as a prepro-
cessing stage that optimizes the circuit before garbling it.
Put another way, this step attempts to remove inefficiencies
introduced when the underlying function was being encoded
as a circuit.

Circuit optimization strategies include looking for unused
gates, gates that have no effect on the circuit’s output, finding
sub-circuits that can be more efficiently represented by a
smaller number of gates, and removing identity gates and sub-
circuits that are guaranteed to evaluate to 0 or 1 and replacing
them with simpler constructions[14, 22]. The benefit of
from this type of optimization will be inversely related to
the quality of circuits generated by the function-to-circuit
translating process. One study[22] found a 60% reduction
in circuit size when optimizing circuits generated from a
common circuit generator[17].

6.3.2 Free XORs
A second strategy for reducing the number of gates needed

in a garbled circuit is the free XOR technique, discovered by
Kolesnikov and Schneider[13]. This optimization allows for
the circuit constructor to replace all garbled XOR gates in
the circuit with a simple XOR operations. This results in
the significant improvement of removing four garbled values
from the circuit for every XOR gate.

The free XOR technique works by changing how some
of the garbled values for wires in the circuit are selected.

Recall that by default each garbled value of 0 and 1 for
each wire in the circuit is selected randomly. The free XOR
technique instead relates the values of the input wires to
XOR gates so that the gate’s correct output values can be
computed with a single XOR operation, instead of needing
to lookup and decrypt the output value in a garble truth
table. Since garbled truth tables are no longer needed for
all XOR gates, the size of the garbled circuit is reduced by
|XORgates| • |k|, where k is the size of the garbled values
used in the circuit. The free XOR technique is described
more formally in algorithm 5.

Algorithm 5 Free XOR Technique

1: P1 , the circuit constructor, generates secret R ∈ {0, 1}k,
where k is the length of each garbled value in the circuit.

2: Let G be the set of all XOR gates in the circuit, and
let gin0 and gin1 refer to the gates in the circuit with
output leading into gate g. Finally, let kbini

refer to the
b ∈ {0, 1} value of wire leaving gini and entering g.

3: for g ∈ G do
4: Set k1in0

= R⊕ k0in0
and k1in1

= R⊕ k0in1
.

5: Replace g with a function returning kin0 ⊕ kin1 .
6: end for

Note that the description of the free XOR technique in
figure 5 is not immediately compatible with the previously
discussed fast table lookups technique. Such a construction
is possible, though slightly more involved. It is provided in
[14], but omitted here to avoid complicating the description
of the free XOR technique.

6.3.3 Garbled Row Reduction
Pinkas et al.[22] developed a technique to further reduce

the number of garbled values that need to be stored in the
garbled circuit. Their technique, called garbled row reduction,
removes the need to store one garbled value from each AND
and OR gate in the circuit, and does so by building on the
fast table lookups technique.

Garbled row reduction works by special casing one of the
four possible indexes into a gate’s garbled truth table. Pinkas
et al. select (0, 0) for this special case, but that decision is
arbitrary. For this special case, the garbled output value
for the wire is defined to be a function of the input wire
values, instead of a new, pseudo-random value. The circuit
evaluator can then receive the output wire’s value in this
special case by performing some computation equivalent to
kbout ← H(kin0 , kin1 , g) (where g is a unique identifier for the
gate) and assigning an index bit of 0. The value of b would
depend on the type of gate (AND or OR) and the boolean
values represented behind the input wire values that carried
the (0, 0) index.

The circuit constructor would then need to correctly pop-
ulating the rest gates garbled truth table, using the above
value for any other rows where the output wire should carry
value b, and using kbout ⊕ R in the other case (to maintain
compatibility with the free XOR approach from the previous
section).

7. IMPLEMENTATIONS
This section briefly describes three significant implementa-

tions of Yao’s protocol and some of their relevant security

and performance characteristics. Other significant and im-
portant implementations of the protocol are noted[21, 24],
but because of time and space constraints are not discussed
further.

7.1 Fairplay
Fairplay [17] was developed in 2004 and was one of the

first attempts to create a practical system to execute Yao’s
protocol. The system included a high level language for
describing functions, which the system would transform into
circuit representations suitable for garbling.

The system provided some security against malicious ad-
versaries. For example, a simple cut-and-choose system,
similar to the one discussed in section 5.2.2 was included
to provide P2 1 − 1/m protection against corrupt circuits
from P1 . However, the system is not secure against other
attacks from P1 , such as the corrupt input attack discussed
in section 5.3.

Fairplay was the first to implement one of the performance
techniques discussed in section 6, fast table lookups. The
system also implemented several different OT protocols and
found that there were significant performance differences
between them.

Fairplay was evaluated against four functions, an AND
bitwise operation, the “billionaires problem”, a simple key
database search, and finding the median value in the com-
bined array of the inputs of both parties. The largest com-
puted circuit consisted of 4383 gates and the system com-
puted these functions on the order of seconds. Interestingly,
the researchers found that communication costs dominated
computation costs in all functions. Given the simple nature
of most of the problems, Fairplay could be said to have shown
that Yao’s protocol was closer to practical usage than most
researchers probably expected, even if it was not there yet.
Fairplay became the baseline that other implementations
were judged against.

7.2 Huang, Evans, Katz, Malka
In 2011 Huang, et al.[11] presented a new practical system

for carrying out Yao’s protocol. Like Fairplay, the system
used a high level language that users could write functions
in, in this case Java. The system would then automatically
translate these high level functions into circuit representa-
tions.

This approach focused on the semi-honest scenario, and
thus made the trade off of less security for faster performance
(the paper explicitly discusses the reasoning behind this de-
cision). The system included the performance optimizations
in Fairplay, but added many others, including free XORs
(discussed in section 6.3.2), garbled gate reduction (discussed
in section 6.3.3) and pipelined execution (discussed in section
6.2.2).

The system was compared against previously best known
privacy preserving methods for computing Hamming distance,
Levenshtein distance, Smith-Waterman genome alignment
and AES, and found an order of magnitude improvement
in their system (though it is not discussed if the compared
to approaches are secure in the malicious case or similarly
just in the semi-honest case). The largest circuit computed
consisted of over 1 billion gates, for the Levenshtein distance
problem.

7.3 Kreuter, Shelat, Shen
Most recently, Kreuter et al.[14] presented a system for

carrying out Yao’s protocol in the malicious case. Similar
to the previously discussed methods, this system includes
a way of converting from a high level representation of a
function into a boolean circuit. Here the high level language
was created by the authors. The compiler is also specifically
compared to the Fairplay complier. The authors find that
their boolean circuit compiler is able to generate dramati-
cally larger circuits using fewer computational resources than
previous efforts.

This work represents the state of the art in securing Yao’s
protocol in the malicious case. While the work is not quite
able to claim full security against malicious adversaries (be-
cause of the open problem of P2 being able to abort early
and not reveal the circuit’s output), it appears to be as close
as possible given known methods. The work includes all
security techniques discussed in section 5, as well as some
other strategies that are beyond the scope of this paper.

Similarly, this work also includes all discussed performance
optimizations discussed in section 6. It also incorporates
strategies that are not discussed in this paper because they
are either hardware dependent (the system uses hardware
optimizations in the Intel Advanced Encryption Standard
Standard Instructions provided on some Intel and AMD pro-
cessors) or highly heuristic based and possibly not generally
applicable (see the system’s method for limiting the working
set of a garbled circuit).

The system was evaluated on AES, RSA signing, dot prod-
uct computation, and edit distance of large strings. The
evaluations show that the random seed checking (section
6.1.1), garbled row reduction (section 6.3.3) and free XOR
(section 6.3.2) optimizations provide the greatest improve-
ment. The largest circuit computed in the system was in
finding the edit distance between two 4095 bit strings, which
required over 5.9 billion gates and 8.2 hours. This is com-
pared to the Huang et al. approach to the same problem,
which computed the same edit distance computation more
quickly, but in the semi-honest setting.

8. CONCLUSION
This paper attempts to provide an overview of the field

of SFE using Yao’s garble circuits protocol. In addition to
the techniques and approaches discussed in this paper, there
is a great deal of related work in other fields that might
be of interest for those interested in practical SFE, such as
zero-knowledge proof systems, performance optimizing OT
constructions, malleable claw-free collections, and verifiable
secret sharing. Similarly, other practical-oriented implemen-
tations of Yao’s protocol, such as the LEGO system[21], may
also be of interest.

References
[1] M. Bellare and S. Micali. Non-interactive oblivious

transfer and applications. In Advances in
Cryptology-CRYPTO’89 Proceedings, pages 547–557.
Springer, 1990.

[2] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations
of garbled circuits. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 784–796. ACM, 2012.

[3] W. Diffie and M. E. Hellman. New directions in
cryptography. Information Theory, IEEE Transactions
on, 22(6):644–654, 1976.

[4] C. Gentry. A fully homomorphic encryption scheme.
PhD thesis, Stanford University, 2009.

[5] O. Goldreich. Secure multi-party computation.
Manuscript. Preliminary version, 1998.

[6] O. Goldreich. Foundations of Cryptography: Volume 2,
Basic Applications, volume 2. Cambridge university
press, 2009.

[7] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In Proceedings of the nineteenth
annual ACM symposium on Theory of computing, pages
218–229. ACM, 1987.

[8] V. Goyal, P. Mohassel, and A. Smith. Efficient two
party and multi party computation against covert
adversaries. In Advances in Cryptology–EUROCRYPT
2008, pages 289–306. Springer, 2008.

[9] S. Halevi and S. Micali. Practical and provably-secure
commitment schemes from collision-free hashing. In
Advances in CryptologyâĂŤCRYPTOâĂŹ96, pages
201–215. Springer, 1996.

[10] C. Hazay and Y. Lindell. Efficient secure two-party
protocols. Information Security and Cryptography.
Springer, Heidelberg, 2010.

[11] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits. In
USENIX Security Symposium, volume 201, 2011.

[12] M. Kiraz and B. Schoenmakers. A protocol issue for

the malicious case of yaoâĂŹs garbled circuit
construction. In 27th Symposium on Information
Theory in the Benelux, pages 283–290, 2006.

[13] V. Kolesnikov and T. Schneider. Improved garbled
circuit: Free xor gates and applications. In Automata,
Languages and Programming, pages 486–498. Springer,
2008.

[14] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate
secure computation with malicious adversaries. In
Proceedings of the 21st USENIX conference on Security
symposium, pages 14–14. USENIX Association, 2012.

[15] Y. Lindell. Secure two-party computation in practice.
Lecture given at Technion-Israel Institute of
Technology TCE Summer School 2013,
https://www.youtube.com/watch?v=YvDmGiNzV5E,
2013.

[16] Y. Lindell and B. Pinkas. An efficient protocol for
secure two-party computation in the presence of
malicious adversaries. In Advances in
Cryptology-EUROCRYPT 2007, pages 52–78. Springer,
2007.

[17] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, et al.
Fairplay-secure two-party computation system. In
USENIX Security Symposium, pages 287–302. San
Diego, CA, USA, 2004.

[18] P. Mohassel and M. Franklin. Efficiency tradeoffs for
malicious two-party computation. In Public Key
Cryptography-PKC 2006, pages 458–473. Springer, 2006.

[19] M. Naor and B. Pinkas. Efficient oblivious transfer
protocols. In Proceedings of the twelfth annual
ACM-SIAM symposium on Discrete algorithms, pages
448–457. Society for Industrial and Applied
Mathematics, 2001.

[20] M. Naor and B. Pinkas. Computationally secure
oblivious transfer. Journal of Cryptology, 18(1):1–35,
2005.

[21] J. B. Nielsen and C. Orlandi. Lego for two-party secure
computation. In Theory of Cryptography, pages
368–386. Springer, 2009.

[22] B. Pinkas, T. Schneider, N. P. Smart, and S. C.
Williams. Secure two-party computation is practical. In
Advances in Cryptology–ASIACRYPT 2009, pages
250–267. Springer, 2009.

[23] M. O. Rabin. How to exchange secrets with oblivious
transfer. IACR Cryptology ePrint Archive, 2005:187,
2005.

[24] C.-h. Shen et al. Two-output secure computation with
malicious adversaries. In Advances in
Cryptology–EUROCRYPT 2011, pages 386–405.
Springer, 2011.

[25] A. C.-C. Yao. Protocols for secure computations. In
FOCS, volume 82, pages 160–164, 1982.

[26] A. C.-C. Yao. How to generate and exchange secrets.
In Foundations of Computer Science, 1986., 27th
Annual Symposium on, pages 162–167. IEEE, 1986.

