12 United States Patent

Livshits et al.

US011960834B2

US 11,960,834 B2
Apr. 16, 2024

(10) Patent No.:
45) Date of Patent:

(54) READER MODE-OPTIMIZED ATTENTION

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

(58)

APPLICATION

Applicant: Brave Software, Inc., San Francisco,
CA (US)

Inventors: Benjamin Livshits, London (GB);
Peter Snyder, San Francisco, CA (US);
Andrius Aucinas, London (GB)

Assignee: Brave Software, Inc., San Francisco,
CA (US)

Notice: Subject to any disclaimer, the term of this

Appl. No.:

Filed:

US 2021/0097134 Al

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

16/589,031

Sep. 30, 2019

Prior Publication Data

Apr. 1, 2021

Int. CI.

GO6F 40/14 (2020.01)

GO6F 16/93 (2019.01)

GO6F 16/957 (2019.01)

GO6F 16/958 (2019.01)

GO6F 40/106 (2020.01)

GO6F 407197 (2020.01)

GO6F 40/109 (2020.01)

U.S. CL

CPC GO6rl’ 40197 (2020.01); GO6F 16/94

(2019.01); GO6F 16/9577 (2019.01); GO6F
167986 (2019.01); GO6IL 40/106 (2020.01);

GO6F 40/14 (2020.01); GO6F 40/109
(2020.01)

Field of Classification Search

CPC

.. GO6F 16/80; GO6F 16/90; GO6F 40/00;

GO6F 40/197; GO6F 16/94; GO6F

16/9577, GO6F 16/986; GO6F 40/106;
GO6F 40/14; GO6F 40/109; GO6F 40/103;
GO6F 40/143; GO6F 40/154

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2006/0139312 Al* 6/2006 Sinclair, IT GO6F 3/0481
345/156
2010/0205523 Al* 8/2010 Lehota GO6F 16/9577
715/235
(Continued)

OTHER PUBLICATTIONS

“How browsers work”™ by Garsiel et al, published Aug. 5, 2011 and

retrieved from https://web.dev/howbrowserswork/ (Year: 2011).*
Arc90 Inc., Readability.js README.md, 2010, https://github.com/
mozilla/readability/blob/master/ README.md, accessed Dec. 31,
2019, pp. 1-4.

(Continued)

Primary Examiner — Sanchita Roy
(74) Attorney, Agent, or Firm — Holland & Hart LLP

(57) ABSTRACT

An attention application, such as a web browser, includes a
pipeline optimized for faster, more secure, and more private,
viewing of hypermedia documents using a reader mode. The
reader mode 1s “always on” 1n the sense that a classifier runs
on every web page and every compatible page 1s rendered 1n
the reader mode and not rendered 1n full, referred to as the
bloat page. Significant time savings are gained by avoiding
fetching and rendering the bloat page at all because the bloat
page devours network bandwidth and computing resources.
Avoiding loading the bloat page also avoids exposing the
user to what are often abusive privacy iniringements and
security vulnerabilities from runming executable code 1n the
browser, while providing an uncluttered viewing experience
of content that 1s actually of interest to the user.

21 Claims, 10 Drawing Sheets

A— 800

402

Receive a renuest from a user of ah attention apalication for meds contant,

...

~h .

r =
A A A A A A A A A A A A A AL A A A A A A A AL Ay

304

miarkeg features.

Tranmmit o request 1o a madi2 contant server for a hypermedia Jocument
referencing the madia cuntent, the hycermedia dpcomiert inciuding 2 sot of

-

-
’,

8oE

llllllllllllllllllllllllllll

Deteming. by a classifier, basad atigastin pact on the st of markup features,
 whether the hypermesia docoment satisfies 2 reader mods condition.

lllllllllllllllllllllllllllllllllllllll

=
|
E.DE ._F__...-r"" -

3
L

!!!!!!!!!!!!!!!!!!!!!!!!!!!!

./* Generate, befors rendering the hypermedia dockanent, @ wader made vesionof %
ihe hypermed:a docement by extracting 5 subsat of the merkup featires i the :
hypermedia docunent satishies the reader mode conditton.

P — f s "oy "ma "a "ea "ma "2 "ea "ma "3 s "ma "z s "ma "a "y "ma "2 "y "my "2 "3 ma "3 g ma w3 s ma e g

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

-

v render ihe reader moae vesin of the hyparmedha docyment $o yield 2
rendered reader mods versian of the ypermesia document,

PO

g1y

i
e e e e e i

-
g12 1

- Display the renoered reader mode varsion of the hypemnedia dacument 1o the 1
user of ihe attention application,)

e e L e L e e e L e e i i e e e e e e e e e i e e e e e e e b

US 11,960,834 B2
Page 2

(56)

2011/0119571
2011/0302510
2013/0111595
2013/0124513
2013/0212465
2014/0281902
2014/0283033
2014/0359412
2014/0380454

2017/0011029
2018/0373803

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*

Al*
Al*

References Cited

5/2011

12/2011

5/2013

5/2013

8/2013

9/2014

9/2014

12/2014

12/2014

1/2017
12/2018

U.S. PATENT DOCUMENTS

Decker GO6F 16/9574
715/205

Harrison GO6F 16/957
715/760

Amit oo, GO6F 21/577
726/25

Bignert GO6F 16/353
707/728

Kovatch GO6F 40/143
715/234

Feuerlein (GO6F 16/958
715/234

Anand HO4L. 63/1441
726/22

Decker GO6F 16/9558
715/205

Sakata GO6F 21/606
726/11

Chatterjee GO6F 16/35
Shultzc.ovenn. GO6F 3/0482

OTHER PUBLICATTONS

Arc90 Inc., Readability.js source code listing, 2010, https://github.
com/mozilla/readability/blob/master/Readability.js, accessed Dec.
31, 2019, pp. 1-43.

C. Kohlschutter, et al., Boilerplate Detection Using Shallow Text
Features, WSDM 10, 2010, https://www.13s.de/~kohlschuetter/
publications/wsdm187-kohlschuetter.pdf, accessed Dec. 31, 2019,
pp. 1-10.

Google, Inc., DOM-Distiller, README.md, 2017, https://chromium.

googlesource.com/chromium/dom-distiller/+/
5dad487862e6b079¢ctc8b8095b5b61d23¢c861201fa, accessed Dec. 31,

2019, pp. 1-11.
Google, Inc., DOM-Distiller, Chrome Web Store entry, https://
chrome.google.com/webstore/detail/dom-distiller-reading-mod/

olembdaoobiymdmeobkalachgifealpl 7authuser=1, accessed Dec. 31,
2019, pp. 1-7.

Apple, Inc., SafariReader Developer Documentation, https://developer.
apple.com/documentation/safariextensions/safarireader, accessed Dec.
31, 2019, pp. 1-3.

Apple, Inc., Working with Safari Reader, https://developer.apple.
com/library/archive/documentation/Tools/Conceptual/
SafanExtensionGuide/ WorkingWiththeR eader/WorkingWiththeReader.
html, accessed Dec. 31, 2019, pp.

* cited by examiner

U.S. Patent Apr. 16, 2024 Sheet 1 of 10 US 11,960,834 B2

7\, By Author 500 Iikes
{ N/ | Filedto: Topic 43 shares}
Y Posted: 7/11/19 13f@liows

IMAGE 122

Article Text 128
W:thtut reader mode optnmlzed pnpime 100 ~

hitps:/lwww.publisher.com/pa.. '?_ '

> Classifier

Artcle Text 142} ——

U.S. Patent Apr. 16, 2024 Sheet 2 of 10 US 11,960,834 B2

Browser Site Publisher(s)

204 Request hypermedia document

...

206 Return hypermedia document

208

~, Classify hypermedia document
£ available for reader mode

210

Tree transduction

212 Request resources for reader mode

) Render reader mode

U.S. Patent

Page rendering,

v

(Reade

Y

. subset?

_ executing Javadcript

[F EftChi?ng [esources,
. frackers, ads, elc.)

_______ Ay

r Mode)

Pt

Apr. 16, 2024

Fetch resources for reader mode

.

(' Render reader m

™

Sheet 3 of 10

US 11,960,834 B2

niode button

328

_ executing JavaScript

Page rendering,

336

{ Treetra

340

U.S. Patent Apr. 16, 2024 Sheet 4 of 10 US 11,960,834 B2

Site Pub

407

Classification Engine
410

Code execution IV N\
and layout engine) Transducer
412 /A 414

Render Engine
416

User

FIG. 4

U.S. Patent Apr. 16, 2024 Sheet 5 of 10 US 11,960,834 B2

#—500

3.1 Classifier

Pesign

Diesc ﬂpﬁm’g ;

nuanber of <
iﬁumbﬁ' @f ﬂﬂ;&
I‘ﬁﬁﬂﬁfiﬂ?a}

FEi3 :&ﬁﬁ%lﬂﬁ
1% Blockauote :nmmbﬁf @i f‘“mﬁm&um@%

334 B2

US 11,960

Sheet 6 of 10

Apr. 16, 2024

U.S. Patent

ICAC N

S A N

e T T Tyt .ﬂl.-_._l_-hi- o .

L L B

i

'—:1-'—'-!'

L]

T
W :;'-

-
Tx

-
Ta

L

AL L L
r

e
u'w

wa Il-'ll:-l:'l

et

L] ==
L]
-I. "-'.-I -\.'.'l'

o

"

[] F =

oo

R R

I o o L B R e e
1]

.
L)

N
L M bt

*

*-

r
[
[

.
*-..-.._..._..._............._......_............._......_......_......_......_............._......_............._..+._............._......_............._......_......_......_......_.............-.+.-.+........-.+.-.+........-.+++.......++++.......
' o -

O AC IC SC I M N

. N e

SN N ._....4..4.._....4..41.4..4..4.._....4.414.4.4.4.4.414.1}.—
P .

. Ve T x

e e =
OGP
BN N B -

. [[.
......-_I.MI.”-”.

[

3 4.4.4.._..._-1."

-I
,
T
o

‘: UL W

AN
.

b' l"l
=%

L4
i

2

P

L

=
»

.) -l-

L

M

L] I.I I.I I.I I.I I.I I.l I.I I.I I.I I.I I.I I.I I.I I.I I.I I.‘-

- x

cm

ﬂ.-&.
a T
T
I.Il..- '

% % % % 3 % B .

.ﬁ. L oBE N R R Ch o Lo DR DL R L SR Rl OB TR SRR SR R R R R AL SR R I

[2 . .
- . '

' HEH -

. V.

- I - [

] L

4
.

A,

B

e e
e

'_'_Hl:-l"'
F
»
» -
.*1.
s
» -
» -
»
» -
»
»
»
» -
»
» -
F
» -
»
» -
»
» -
»
»
»
» -
»
» -
»
»
»
» -
»
» -
»
»
»
» -
»
» -
F
»
»
» -
»
» -
»
»
»
» -
»
» -
»
»
»
» -
»
» -
»
»
»
» -
»
» -
»
»
»
» -
»
» -
»
»
»
» -
»
» -
»
»
»
» -
»
» -
»
.
"

e T N N N N N N N N N N N N N |

Catatat ot

Ll]

L e e

A .__.-..”ul.”.l_ .

&

i A
*,

L]
T
J.-'rl
A

£-5

L P

oo

B

. .;;..F_ .
- - .
&

o

*b

R N

TP TR S W T N M M M Y T W W W oW .-.._. L ”..... -.II-_.

WA AR R A K A KA K K KR KK K K KK KK KR KK KN R KR RN RN NN KRN X

.:'q-*{k: ‘I- r -1

|
-

)

1.._._._.
.__..-_tM.
e
r H—.—
- E.’-
XY
F .
paman ..
2 Y
e el
waln - .ﬁ
= W [e] k
.) '
" THI. .
” .T-.._ -J-
. .r'
R ot
.ty __.N..__.
.

Ll W
s

I
]
L |

s
-l-.il
L J
o

e

e »
Pl .
L) *
__l.-.L _-1. . .L"|.t
X . A .
vVaoalgt ety
!.__..-.”I. l__.. .-.l.-_l .rl
e .
e o X
S
i -

R

. ‘ma .

!.H.Il PR
r .._..-. =)

l.__....w-_

-*-
L]
-

[]
Yelatale st

r -

.
e T
r -q
»

]

L]
L]

- -

g

H |
L]

voaien T

PR RENY XN

ru

-.'Ir.'l'

LR NN NI A

L]
-
I

L)
L

i
v

e .
» . - .
m A . -
Aol B . . l._..r . .
. " PR H . .iH. P
" . o
“. I_.I.l. ...-..Il..iq
‘*‘ ... ! 1.-.&5
R R 17 .
II."I.H ... T
i) -_......4.4......4.4......4.4......4.4......4.4......4.4......4.4......4.4......4.4......4.4......4.4......4.4......4.4......4.4......4.4......._nnm_.....4.4......4.4......4.4.....

L) I-‘I-*I*-

A N

i .
}:4;4144444444444444444
i

-

..
'*l...

+

-

L3
L] -'I-*I-
f . it

L]
..
" =" m = om o=k EoEoEoEEEEEEEEEEEEEEEEEEEEEEEEE

)

l.-
L]
r

T
L]

.
L
[]
L]

351

L4
.

fol

*
*

-

o
1

r

U.S. Patent Apr. 16, 2024 Sheet 7 of 10 US 11,960,834 B2

700

Browser Site Publisher(s)

704 Request hypermedia document

"‘—..‘H]

706 Return hypermedia document

712
~ Execute retrieved scripts to generate text

& and page markup expected to be readable

714
Py

Tree transduction
"® Request resources for reader mode

"8 Return resources for reader mode

Render reader mode

U.S. Patent Apr. 16, 2024 Sheet 8 of 10 US 11,960,834 B2

& 800

Rece|

e a request from a user of an attention application for

L
- o ..
; _l'l a .l:x.-.u.-.! -
L E
PR Y
- v r KR
- -k

edia content.

F o R J d J J d J J d J J d J J d J J d J J d J J d J J d J J d J J d J J d J J d J J d J F s

B .
F ek rrbrrrrbrrrbrrbrrrrbrrbrrrlrlrrrrrlrrrrlrrrrrlrrrrlrrlrrrlrlrrlrrrlrlrrrlrrlrlrrrrirrlrrlrlrlrlr ik rFFEFFFEeFEeFrEeKkE IbblI*l---

*l

L)
iy

Transmit a req
reterencing the media
arkup features.

pernme t
“document including a set of

.l|.: 1"': li.l|.: Ii.l|.: 1"': ‘.l!.l.l.i

o

o

o

=T n
B e e e e e e e S

mine, by a classifier, based at leas

)

L)
e

.l.: Ii.l|.: 1"': ‘.l.i.i

b}

in part on the set of markup features,
atisfies a reader mode conaition.

Fre e rrrkrr bk

Bt
Pl

]]
B L
B e e T e ol e et e e e e e e e e P P S

.-:.-e'*q-T-')
]

-

S

|

r mode version of
atures i

Generate, before rendering t
o —1 the hypermedia document by
hypermy ' "

ent, ar

g, g
|

L

L N N

acting a subset of the markup *

A
]

AL A A A AR AR A
Sl el il Ul Uil Sl 3l il Uil il Uil il S

ode condi

i B e b e e ek e R R R R R R R R R R e ek el el ;
SR REE R R EEEE X AR AR AR AR AR AR EEE FEELEEELEEEEEEE XA X AN FERLE L AL EEEXEEE N EEEELEEEELEEEELE AL EEEEE X E N EEEEEELEEEE AL EEEEEEEEEERE EEELEEEL AL EEEEE X EEE N EEELEEEEL AL EEEEEEEEEERE EEELELEELEEEREEEEEEEEREEERE S
r = - L T T T NN R RN RN RN BN BN AR N D N B RN B R B B TN R TR R BN BENE BN B B B DR B DR B R N RN B BN B NN N N TR N B B L T RN BENL RN DR NENL BENN B DENN RN RENL BN B BN RN RN TREN RN REAL B RENL RN BN NENL N RN RN R TR TN BENL B B B BN B R | LI T T B R BN N TR BN B DR B DR TENN B DR N RENL BN BN NN BENN NN BENN TN NENE BN BN B B RRNL N RN RENL B N RN R TERN DENN NN BENE TR TENN BN RN TENN B BRNL D BN DENL N DRNL BENN B NENN TERN RN BENN RN BEEE BN RN TENN TN BENL L RENL NENL B NENL N DR RN BN TN TN DR R B BN R B BENL B BENL TR R]

r -
b*~ -

.n-'-
X
oK, I*_._-l'll
[
. -

dia docy
dia docu

PR NN Y Y Y R N N NN N R N N N NN N N N Y N NN N Y Y N Y N

o
i

T
okl ke ko ke kb b

.1.* .
- e e e T s r
-_r BN A W M W M M M W M W M M M W M W M W M W M M M W M W M oM M oW M W M W M W M W M W M W M W M oW M W M W M oM M W M oW MM M oW W oW M W M W M W M oW M W M W M W M W M W M W M W N W Mo M W M W M W M M M oW M W M W M W M W M W M W M W M W M W M W M W M W M W M W M M M W M W M M M M M W M W M W M W W M M W M W MW M M W M W N M M W MW W N W M W MW >] »]
- IHH?l?l?l?l?l?li'l?lHHHHHHHH?l?l?l?l?li'lHHHHHHHHHHHHHHHHHHHHHH.i'l?lHHHHHHHH?l?l?l?l?l?l?lHHHHHHHH?lHHHHHH?l?l?l?l?l?l?l?l?lHHHHHHHH?lHH L

= h kB Rk kb kel bkl bkl kbbbl bbbkl bkrrirbrbrbrbrrirbrbrbrbrbrbrbrbrbrbrbrbrbrbrbrbrbrbrebrbrbrbrbrbrebrbrbrbrrrerbrrRr Ll Ol il el el el ekl el el el el ekl el el el Ol el el el el el Ol el el el el el el el el el el el el el el el el ek Ul el el el el ek Ul el il el el ek el el el el ekl el el el Ol el Ul el il el el el Ul el el el ek Ul e Dl el el R B R
T T e e T i e e e e e e i i L e e i i e e R B T i T el e e

Display the rendered reader mode version of the hypermedia do
- user of the attention application,

W
+ = % W F F FFEFFEFFEFFEFEEFEFEFEFEFFEFEPR
= = = m K & KN K hF & K K KK & K &K K K

F F F FFFFFEFEFFEFFFEFEFFEFFFEFEFFEFEFFEFEFEFEFEFFEFFFEFEFEFEFEFFEFFFEFEFEFEFEEFFEFEEFEEFEFEFEFEFEFEFEFEFEFEFEFF F F F FFFFFEFFEFEFFFEFEFFEFEFFEFEFFEFEEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFFEFEFEFEFEFF F F F F FFFFFFFEFEFrFFPFFEFEFErFFEFFEFEFEFESY -
" & & & &K & & &K & & K & &K K &K & K &5 & K &K &K &K &K & &K &5 & &K & & &K &K & &K &K &K &K &K K &K & K &K & &K &K &K & &K & K &K &K & &K &K K &K &K &K &K & & & " & & &% &K &% & &K & & K & & K & & K &5 & K &K & &K & & &K & & &K &K K &K & & &K & & &K &K K &K & K &K &K K &K & & &K & & &K & & &K & & &K &K K &K & & § H b 8 &% &K &% & & &F & &K & & &K & & &K & & K §F K § 54 = = = -«

U.S. Patent Apr. 16, 2024 Sheet 9 of 10 US 11,960,834 B2

- - K
b N -
1.*_

o
.' P
- ..
F .

'
.
e

Receiving a complete document, the complete hypermedia docu-
2 —""1 menthaving not been rendered by an attention application.

g g o a a a a a

b i i
Fr bk rrrlrrbrrr

n,
'

> L]
[]
-
Ve
¥t
=)
BB e me ma mE E B M E WM W W M WM EH MR E M E WM R H R R M E W W B H M E e R WM R W M E W W M H M E E M R H WM H R M E W W R H M E M W E WM EE E R R E WM R R M E WM EE M E H R H MR W M E W M E W E e M H ma H o W E E M E WM EH M H WM EH W H H W R E WM R E M E W E e e E e R R R R
:xxuxux1xtxuxuxtxuxuxuxuxuxuxux1:xuxux1:xtxux1:xuxux1:xuxux1:xuxux1:xtxuxuxuxuxuxuxuxuxuxuxuxux{--e1¢xtxux1:xuxux\exuxux\exuxux\exuxux1:xuxux1:x\exux1:x\exux1:x\exux1:x\exux\exuxux1xuxuxuxuxuxuxuxuxuxuxuxna L
R oyo- s
. ‘l*bbb bbl*l-
... .
-'l
. -
.-
--
. . . - . . .o . .
-8 .- . . r . .] " y]] i .
. e, .
. . L LR UT) - .) B .) . . . - . Lo nT e LRy RO S Lo) . . - . X i M B athein -, . .

ipermedia features in the complete

. report including a prevalence of a set of hy
hypermedia document.

: 1"': li.l|.: Ii.l|.: 1"': li.l|.: lE.l|.: 1"': li.l|.: Ii.l|.: 1"': ‘.l.!.i -]

: i.l._

F ek r ek rrrrrr

’ H‘H’?.r-v.r'.vF.v.r'v.r'v'rvFv?vrvrvpvrvpvrvrvrvrvrvrvrvrvrv;ﬂv;ﬂv;uv;u'u;uv;uvrv;l.v'p'v'p'v';lv;lv;lv;lvpvrvrvrvrvr'.v'p'v';u;'p'v'p'v'pvrvrv;ﬂv;ﬂvr1|l;||lvrvrvpvrvrvpvrvrvrvrvrvpvrvrvpvrvrvpvrvrvrvrvrvpvrvrvpvpvpvpvpv'p'v'p':_"'g":
I

--Ibbb

L

* ¥
F ke rrlrrrlrrrlrrrlr e rlrlrlrrlrlrrlrrrlrrlrlrr el rlrlrlrlrlrlrlrlrlrlrlrlrlrlrrlrlr el lrlrlrlrlrlrlrlrlrlrlrlrlrlrlr el lrlrlrlr el lr R

assifying the ;gomp;l:et;e; hg; .-

'. .
ol
.n-*-‘

~ =3
D
Lo ol

:‘.l.:.:.:. r

o w e lrrrrrrbkrbk

..4,
I R T e e e e e e e e e e e e i i i i i i i e i i il i i i i ki i i i i i i e i i i i i i i i i i i i i I i i i i T i i i e i i
.'xi-ﬂ_i_iiiiiiiﬂiiiiiﬂiiﬂiiiiiﬂiiiiiiiiﬂ--l--I-I-l-i-l-l-i-I---I-l-|-l-|-I-I-l-i-l-l-|-l--I-I-l-i-l-l--I-l-i-I-l-|-l-|-I-I-l-i-l-l-i-I-l-i-I-l-|-l-l-I-I-l-i-I-l-|-l---I-l-i-I-l--I-l-i-I-l-|-l-l-|-I-l-i-I-l-i-I-l-i-I-l-|-l-l-|-I-l-iiﬂiiﬂiiﬂiiﬂiiﬂiiﬂiiﬂiiﬂiiﬂiiﬂiiﬂiiﬂiiﬂ
B E I e i i e e T e R e i e e e e e e e e e e e e i e e e e e e e e e e e

HHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHIHIHHHH

(Transmia?tings tfhe_ c‘::emp'l;eé e hz_-.zpzemedia document to a tree transducer If the
nent satisfies the reader made condition to yield a
hypermedia document.

n W
"----l-l--lv'g" . -
HHHﬂxdxddedxﬂx%ﬂxddedxdxﬂxIHHHﬂxdxdxdxdxdxdxdxddedHHHﬂxdxﬂdedxdxdxdxdHﬂxdxdxdxdxﬂxﬂxdxddedxdxﬂxdxddedxdxﬂxdxdHﬂxdxdxdxdxdxﬂxdxddedxdxﬂxdxddedxdxﬂxdxdHﬂxdxdx%ﬂxdxﬂxdxdxdxﬂﬂﬂﬂ LI

e -
.-lh*l*l*b*l b*h b*l b*l b*l b*l b*l b*l b*l b*l b*l b*l b*l b*h b*l b*l b*l b*l b*l b*l b*l b*l b*l b*l b*l b*h b*l*l} b

L L

-l-‘rbbbbbbbbbbbbbbbbrll
CENCEEE TN R R R DR R A DR RN B L

- ‘.‘: ‘.‘: i“: ‘.‘: ‘.‘: i“: ‘.‘: ‘.‘: i“: ‘.‘: ‘.‘: i.l.: ‘.‘: ‘.l. al

AN

. W
"
»

L

U.S. Patent Apr. 16, 2024 Sheet 10 of 10 US 11,960,834 B2

. 'y .
. .
. . .
. .
- *
. .
*. T - -
. ' .
- [-
. P .
. . . .
. - .
. [-
. P .
. . .
. ' .
. o .
. P .
. P .
- * -
. - .
. P .
. . . .
. " .
. [-
. *l 1]
L] [4 -
. ' .
. L] *- -
. P .
. . .
- * -
. % .
. - .
. .- .
. * .
. " .
. . . i .
- - "I
. Pl .
.
> M >) .‘l h
F by - F ke r - F kb sy - - [-
.
%" - -
.
. .
.
%" -
.
. .
.
[-
.
. .
.
[-
.
. . .
.
%" - -
.
- .
.
[-
.
. .
.
[-
.
. .
.
Pl .
.
. .
.
* .
.
. .
.
. ' .
. . .
. .
.
%" -
L] .-. -
.-
*.. -
- .
X & - -
- .
o+ % - -
- .
x ¥ -
- .
* - & - -
- .
L) ¥ -
- .
L] ' -
- .
Pl . .
- .
L) * -
- .
L] ¥ -
- .
[y & - -
- .
o+ & - -
- .
L] ¥ -
- .
* : - -
- .
L) * -
- .
L] ¥ -
- .
* - & - -
- .
[} 1) -
- .
x ' -
- .
X : - -
- .
x, . -
R X] X X S ol B L3 -
CRLE St I ko e e N e e e e e e e e e e e et et e el el . -
JEFEFEREEREER R R ERRER R R RR R R R R R R EE R R R R x"- .
.
.- .
.
o .
.
. .
.
Pl .
.
. .
.
% -
. .
.
.
.
.
.
' . -.‘bl‘}ll}ll}lll‘ll}ll}ll} FFEFEEFEFEEEFEEEN b
- = 2 & & & & §F & &K §F K & K &K & K & & &K § & § LI T T R R T B R B B B) LI) LI) LI) h = - -
i -
.
. - . .
.
. .
.
" .
. - . .
' .
.
- .
.
. - . .
. .
* -
.
. - . .
.
' .
.
- .
.
. - . .
.
. .
.
* -
. - . .
Y -
- .
. . .
. . .
'-*'I'II'II'II'II'II'II'II'II'II'II'II'II'II'II'II'I*"' . -
-l w e o a R '-b-'--llui--h'-bti--b'---'--i-n-'lb-i'q.._- I -

r
l-.a

o I A R A Y. L LT LR h'-'nthur‘;_‘

w kb

- Y -
) "!x .| . . -
Y T v / . -

B e e e T T e e T e P e e e e e e e e e e e e e e e e e e e)
RN RN RN R R R R R, R LR R R R R R R R R R REE JEL R R R R R R RERE _r . -

T o I I P I R R N R S)

- -
¥ - . -
L W -
. -
. .- . r - -
'r_ Srpa b A F i wyewr dd R R e ek R R R W bR -,.-.-..-h. R -
1'. -
r
- -
.
L =
r
- -
.
. -
r
L =
.
. -
r
.
.
r
_ o g e w a w a e a a w r a a w a N) -
R R R R R R R R R R R R R R R R R R R A R R R A R A A A AR AR A FE R EFEEEFEREEREEREEFFEFEEFEEFEEEREEREEFEEFFEFEEFEEFEEFEEFEEFEEFEFEFEEFRER- -)

h U L
ERRETE R S el i Al Aal Al el e A S Ol it i Aal Aal Anl el A Al Al Al el el Al el e A Sl il Al A O Sl Al S Al il il Al Al el Al el Al Al Sl Al el Al Sl Aalt el Al Al Al Al Al Al el Al Al Ja Aal Al Al Al el Al el Al el i Al S il il Al el Al Al Al Al Al A Sl il Ol el Al Al el el Al Al Al il Al el Al Al O A gl Al il Al il Al Al A el Ol ol il Al el Al Al A Al Al Al il Al el Al Al el Al A Al S i Al Ol Al Aal el Al Al Al el Al el Al Al Al Al Al Al Al il el Al Al Al Sl il il Al il Al el Al A Sl il Al il Al Al Al Al Al
= 1 %1177 7777711717777 7171771777777 1171777771171 7177717 1771711777717 177177 7771711117777 7717117177 7177177111777 7 717171717177 17717 7171771777777 177117177T7717171177177 7771717171177 177T7 7171717177717 7171717117777 7171171771111k =

US 11,960,334 B2

1

READER MODE-OPTIMIZED ATTENTION
APPLICATION

BACKGROUND OF THE INVENTION

When consumers of electronic media focus their atten-
tion, 1n particular when browsing the web in a web browser,
often additional matter (e.g., “web bloat™ or “un-usetul page
clements™) that likely are not of interest to the user accom-
panies delivery of the media that 1s of interest to the
consumer. The additional matter can be viewed as merely a
nuisance detrimental to the user experience, for example,
cluttering the web page, wasting display resources, slowing
page load times significantly and more. The additional
matter can also, however, take on a more harmful aspect i
it i1ncludes executable code (e.g., JavaScript mn a web
browser) that consumes computing resources and performs
actions the user does not desire such as load web trackers,
load ads, load malicious or privacy-reducing code, etc. The
bloat thus produces less desirable usability and potentially
harm to the user’s privacy and security.

Accordingly, there 1s a need for an attention application
with a reader mode-optimized render pipeline that can avoid
fetching and rendering unwanted media content, thus
improving user readability experience, save on system
resources, avold malicious code, and improve privacy, espe-
cially from web trackers.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The accompanying figures, where like reference numerals
refer to 1dentical or functionally similar elements throughout
the separate views, together with the detailed description
below, are incorporated 1n and form part of the specification,
and serve to further illustrate embodiments of concepts that
include the claimed invention, and explain various prin-
ciples and advantages of those embodiments.

FIG. 1 1s a diagram comparing an attention application
with an optimized render pipeline for reader mode against an
attention application without a reader mode-optimized pipe-
line 1n accordance with some embodiments.

FIG. 2 1s a signal diagram of an example interaction
between an attention application with reader mode-opti-
mized render pipeline and a web server 1n accordance with
some embodiments.

FIG. 3 illustrates two tflowcharts comparing an example
workilow of an attention application with reader mode-
optimized render pipeline against a workilow of an attention
application without reader mode-optimized render pipeline
in accordance with some embodiments.

FIG. 4 15 a block diagram of example components of an
attention application with a reader mode-optimized render
pipeline 1n relation to a site publisher.

FIG. 5 1s a table of an example classifier design for an
attention application with a reader mode-optimized render
pipeline.

FIG. 6 1s a set of plots illustrating performance charac-
teristics of the novel classifier including distribution of key
performance metrics of an attention application with a
reader mode-optimized render pipeline.

FIG. 7 1s an example signal diagram 1llustrating applica-
tion of a reader mode optimized pipeline including a partial
render of a web page based on a partial render of a web page
based on executing only a subset of page JavaScript code, by
predicted predicting which JavaScript units will result in
additional, “readable” page text.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 8 1s a flowchart of a method of an optimized reader
mode on an attention application.

FIG. 9 15 a flowchart of an example method of classiiying
a hypermedia document as compatible with an attention
application reader mode.

FIG. 10 1illustrates a system that may be helpful 1n
implementing an attention application with a reader mode-
optimized render pipeline.

Skilled artisans will appreciate that elements 1n the figures
are 1llustrated for simplicity and clarity and have not nec-
essarily been drawn to scale. For example, the dimensions of
some of the elements 1n the figures may be exaggerated
relative to other elements to help to improve understanding
of embodiments of the present invention.

The apparatus and method components have been repre-
sented where appropriate by conventional symbols 1n the
drawings, showing only those specific details that are per-
tinent to understanding the embodiments of the present
invention so as not to obscure the disclosure with details that
will be readily apparent to those of ordinary skill in the art
having the benefit of the description herein.

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

Attention applications are high-interaction computer pro-
grams that present media content to an end user. Example
attention application include without limitation web brows-
ers, e-readers, virtual reality (VR) systems, audio playback
applications (e.g., music, podcasts, lectures, etc.), gaming
systems, video delivery systems, applications for browsing
specialized content (e.g., online forum browsers), etc. Atten-
tion applications may run on generalized computer hardware
(e.g., desktop computer, laptop, smart phone, tablet) and/or
specialized hardware (e.g., e-reader hardware, gaming sys-
tem console, VR system).

Media content viewed by users of attention applications 1s
often accompanied by much more than just the media
content 1n which the user has interest and on which the user
wishes to focus her attention (e.g., an article text and 1images
related to the subject matter of the article). This unwanted
additional matter (also referred to herein as “web bloat”)
may 1nclude elements such as site navigation, advertising
related videos and 1mages, comment sections, 1images and
text related to different articles than the one on which the
user wishes to focus her attention, and most computer
programs executable in the attention application (e.g.,
JavaScript in a web browser). Web bloat may be measured
in various ways, including total web page size, page load
time, memory needed to load the page, number of network
requests associated with loading the page, amount of scripts
executed 1n the attention application, and the number of third
parties contacted as part of the process of loading the page.

Typically, a “web page,” as used herein, consists of a
hypermedia document including links to a number of assets.
When the attention application requests and receives the
hypermedia document, it proceeds to make additional net-
work requests to fetch the assets from their respective
network locations. This process creates a data structure
known as the DOM (Document Object Model) that repre-
sents the content displayed to the user at a point in time. The
DOM may be further modified by executable programs (also
referred to heremn as “scripts”) running in the attention
application (e.g., JavaScript). Links to these DOM-modity-
ing scripts may be triggered based on certain types of user
interaction (e.g., hovering the cursor over an area of the
rendered page). A DOM may be significantly altered by the

US 11,960,334 B2

3

application of the execution of the scripts, to the point where
the matenal rendered to the user no longer closely resembles
what was 1n the mitially recerved hypermedia document.

According to one type of browser architecture, the term
rendering means a browser engine and a JavaScript engine
that work in concert via the shared DOM data structure.
Creating and updating the DOM, which 1s the data structure
that determines what 1s shown visually to the user, includes
orchestration of all resource fetching and running of execut-
able code 1n the browser via the JavaScript engine.

The unwanted additional un-useful matter on website can
cause usability problems for the user such as adding clutter
to the user readability experience, waste screen display
resources, especially if the user of the attention application
1s viewing the content on a mobile device, devour bandwidth
resources, and slow page load times (often significantly).
Wasted bandwidth 1s particularly problematic on mobile
data connections, which are more likely to be expensive and
bandwidth capped. Web bloat and trackers have been mea-
sured to consume a quarter of mobile data bandwidth under
typical browsing patterns on modern web sites.

Unwanted additional matter when consuming media con-
tent 1s also a leading cause of privacy and security problems
for users of attention applications. Users of attention appli-
cations tend to leak private information as they consume
media content. Of all types of attention applications, web
browsing 1n particular exposes users to scrutiny from track-
ers who assemble and sell classification and interest profiles
of users to advertisers and media publishers. Users are often
not aware that trackers follow them all around the web, even
on media publishing sites that users believe are unrelated to
the trackers. Abusive web trackers are almost always imple-
mented by computer code executable 1n the attention appli-
cation (e.g., JavaScript). Third party contact when loading a
web page 1s becoming increasingly rife when surfing the
web, and 1s often viewed as being problematic with respect
to preservation of the user’s privacy and security, especially
when the user does not know the 1dentity of the third parties
and has not consented to their inclusion 1n the user’s use of
the attention application.

Certain pieces of information that should be private to the
user relating to sensitive information can be thus exposed to
anonymous strangers such as the browser’s query log,
browsing history, sharing activity, purchase history, map and
travel queries, etc. Even when a user makes a direct request
to a website without using a search engine, the DNS query
can reveal the user’s visit to the website without the user’s
permission or even knowledge. The user experience can take
on a creepy leeling due to targeting ads but also delivers
poorly targeted ads since not even the most ubiquitous
trackers see all of a user’s attention activity. Some websites,
such as news sites, typically host dozens of trackers that
slow page load times and devour the user’s bandwidth.

One way to combat encroachment of unwanted additional
matter 1s for the attention application to include a “reader
mode,” wherein a second version of a website can be
rendered that attempts to omit some or all of the unwanted
bloat content from the display of the content to the user of
the attention application. This approach to reader modes
introduces disadvantages due to the position of the reader
mode 1n the web browser’s rendering pipeline because the
web browser fully loads and renders the page before apply-
ing a reader mode conversion.

One resulting disadvantage of existing reader modes 1s
that reader mode actually delays loading of the page even
more without because the browser fully loads all the bloat,
then renders the page a second time 1n reader mode. Another

10

15

20

25

30

35

40

45

50

55

60

65

4

disadvantage 1s tiresome user experience because the user
sees the bloat-version of the web page render first, and then
must either click or tap a “reader mode” button to convert to
the reader mode version of the page. If the user applies the
reader mode automatically applied to all websites, then the
user experience can feel jarring when the attention applica-
tion renders a web page with bloat, then, often after the user
has begun to read the content, the web page disappears,
interrupting the user, and the user has to wait again until the
reader mode version 1s ready for display.

Another disadvantage of existing reader mode on web
browsers 1s that they do not address the security and privacy
problems of loading unwanted executable code. It i1s the
executable code that 1s almost always responsible for
breaching the user’s privacy, contacting third parties with
information about the user’s attention habits and history
without the user’s consent, and tracking the user across the
web. If the reader mode conversion executed after a full-
page load and render, then it 1s too late to do anything about
the web trackers and privacy iniringement because it has
already happened.

Disclosed herein 1s an attention application with an alter-
native multistep pipeline (also referred to herein as a “reader
mode-optimized pipeline”) that improves readability, per-
formance, security, and privacy. In one example, if the
reader mode-optimized pipeline classifies a web page to be
reader mode compatible, the attention application renders
the reader mode version before tree transduction and does
not ever render the bloat version at all. Instead of a post-
render feature to clean up the clutter on a web page, the
reader mode-optimized pipeline avoids loading and render-
ing the bloat at all. If a page 1s deemed by the classifier to
not be reader mode compatible, then the attention applica-
tion may run tree transduction and render the resulting
non-reader mode version of the page. As with existing reader
modes, not all web pages may be deemed compatible with
reader mode. But unlike existing reader modes, then there
will be savings in resource consumption and increased
privacy for compatible pages compared to the non-opti-
mized tree transduction and render pipelines.

In the past, reader modes may not have eflfectively clas-
sified compatible material well enough for 1t to be practical
to enable reader mode all the time. Disclosed herein a
classification system that can improve detection of reader
mode compatible pages such that the classifier can run on
every web page visited by the user and all compatible pages
rendered without any bloat 1n reader mode (e.g., “always
on”). When applied to all web pages visited by a user, the
reader mode-optimized pipeline showed drastic speedups
and bandwidth reductions compared to manual reader mode
selection. The classification system disclosed herein detects
reader-mode compatible pages based on one or more of: the
number and types of HTML tags appearing in a hypermedia
document; the content and content size of particular types of
HTML tags (e.g., <p>, <g>, , and others); position of
particular HIML tags in the hypermedia document; and/or
a partial tree transduction in which some but not all elements
of the page are rendered before mput to the classifier.

FIG. 1 1s a diagram comparing an attention application
with an optimized render pipeline for reader mode 102
against an attention application without a reader mode-
optimized pipeline 100 1n accordance with some embodi-
ments. Both the areas 100 and 102 illustrate an attention
application rendering media content, in this example ren-
dering a web page, as it appears to the user.

Starting with 100, the non-optimized pipeline, a user of
the attention application 104 requests media content deliv-

US 11,960,334 B2

S

ered 1n hypermedia document 106 at time T,, such as a
document returned by a GET request to the attention appli-
cation from a web server. After receipt or partial receipt of
the hypermedia document 106, the attention application 104
fetches resources linked in the hypermedia document 106
and 1n executable code referenced by the hypermedia docu-
ment 106 and renders page elements visually to the user. It
will be explained what 1s meant 1n this disclosure by the term
“rendering.” Although Time T, shows a web page with all
clements in the window displayed, the rendering process 1s
incremental, and the various elements may be displayed as
they are processed by the attention application 104. In the
present content of a web browser, first a fetching operation
makes network requests to obtain resources referenced by
the hypermedia document 106. Next, a transducing opera-
tion builds a DOM (Document Object Model) based on the
hypermedia document 106 and resources referenced therein.
The DOM 1s expected to be 1 a tree format and the
transducing operation may also be referred to as tree trans-
duction. Unlike a static HTML document contaiming merely
content and markup tags, the hypermedia document 106
may contain references to executable code (e.g., JavaScript)
that, upon execution, alters the DOM after or during its
initial formation. A current window view 1n the attention
application 104 visible to the user may retlect a current state
of the DOM, even while it 1s being transduced by the
attention application 104.

At time T, the tree transduction and rendering process 1s
complete, or at least in a stable state, and the user 1s thus
presented with the media content of the web page with full
bloat. Examples of bloat page clements are illustrated in
FIG. 1, including navigation button 108, site banner 110,
user icon 112, advertisement 114, author icon 118, and social
sharing stats 120. Other types of visual bloat elements not
shown i FIG. 1 may include page navigation elements,
comment sections, additional advertisements, and any ele-
ments consuming screen space that are not of interest to the
user. The eclements that are of interest to the user are
typically 1s text 124 and image(s) 122 associated with the
content of an article or page, and not advertisements, con-
tent, video, text, and/or links unrelated to the thematic
substance of the article (also referred to herein as “‘un-
useful” page elements). Some navigation information such
as URL address bar 126 could be considered of interest to
the user, but some users may not.

When the user flow 1s at Time T,, the user may select to
switch to reader mode, usually through a dedicated reader
mode button, by clicking on the menu button 108, or as
integrated 1into the URL address bar 126. To switch to reader
mode, the workflow advances to Time T, wherein the page
has been rendered again, but now without most or all of the
un-useful page elements. The attention application has deter-
mined which page elements are likely to be un-usetul to the
user and has rendered a subset of those elements based on
the hypermedia document 106. Still rendered are those
clements deemed likely to be of mterest to the user, namely
article text 128, image 130, and URL address bar 126. In
some 1mplementations any one or more particular of these
types of elements could be omitted (e.g., no URL address bar
126, text-only, images-only, audio-only, etc.).

The worktlow from T, to T, can be viewed as including
an unnecessary step at Time T, wherein the bloat page 1s
rendered only to be replaced with another version of the web
page upon switch to reader mode at Time T5. The bloat page
render wastes time and system resources because 1t involves
rendering unwanted elements and program code execution
can be expensive in terms ol processor cycles. The user

10

15

20

25

30

35

40

45

50

55

60

65

6

experience 1s uneven jarring to the user. There 1s also
legitimate security and privacy harm to the user: 1t 1s likely
that loading the bloat page involves a potentially very large
number of data-mining network requests to third parties in
the form of web trackers. Switching to reader mode at Time
T, does nothing to stop harmful network requests that had
already been made earlier 1n the pipeline.

Focusing now on the attention application with optimized
reader mode pipeline 132 1n area 100, there 1s a diflerent
workilow than 1n the example of the non-optimized attention
application 104. As in the non-optimized example, the
workflow begins with hypermedia document 106, but the
next step in the workflow 1s different than in the above
example. Instead of starting to render page elements as soon
as a DOM has begun to be formed via tree transduction (e.g.,
as the HITML document 106 is received), which may be
viewed as a speed optimization, the attention application
132 first performs a classification to determine whether a
web page 1s compatible with reader mode. The classification
may be delayed until the entire or substantially all of the
hypermedia document 106 has been received over the net-
work.

Unlike the non-optimized pipeline, 1if a web page 1is
deemed to be compatible with reader mode, then the opti-
mized render pipeline switches to reader mode strictly
before the display, rendering, and resource fetching steps
that would have followed receipt of the hypermedia docu-
ment 106 in the non-optimized pipeline. In the optimized
reader mode pipeline, the optimized reader mode element
can be thought of as a function that sits between the attention
application’s network layer, and returns either the received
hypermedia document to the render engine when there 1s not
a reader mode compatible subset of the document, or returns
a greatly simplified version of the hypermedia document 136
representing the reader mode presentation of the web page.

In one implementation, the classifier 134 considers only
features available 1n the hypermedia document 106 and/or
the URL corresponding thereto, which achieves a perfor-
mance improvement that 1s orders of magnitude better than
non-optimized pipelines. Reasons for the performance gains
include never fetching or executing scripts or style resources
(e.g., Cascading Style Sheets (CSS)), fetching far fewer
images and videos since 1mages and videos not core to the
presentation of the page are never retrieved, makes far fewer
network requests to far fewer third parties (1n some cases,
Zero), saving computing resources from not rendering ani-
mations, videos, and/or complex layout operations since the
optimized reader mode pipeline are generally simple.

The output of the classifier is the reader mode hypermedia
document 136, which can then be rendered as shown in
window 132 with article text 142, image 140, and address
bar 144, but without the other bloat elements rendered as 1n
the example 100. Rendering the reader mode version in
window 132 involves fetching only the resources referenced
by the reader version of the hypermedia document 136, and
not fetching the bloat elements referenced or created by
executing the initial hypermedia document 106. These bloat
clements are skipped entirely 1n the optimized pipeline 102.

This approach represents a novel approach to reader mode
on an attention application by combining a machine-learning
driven approach to checking whether content can be trans-
formed to text-focused representation for end-user con-
sumption. Applicability of this approach 1s high, as demon-
strated 1n experimentation with 22.0% of web pages being
deemed convertible to reader mode from the dataset of
popular Alexa pages, and 46.27% of pages shared on social
networks being reader mode readable. The approach has

US 11,960,334 B2

7

superior privacy protection, effectively removing all trackers
from the tested pages, and dramatically reducing commu-
nications with third parties. The approach blocks ads at least
as well as existing ad blocking tools, blocking 100% of
resources labeled as advertising related 1n a crawl of 91,429
pages, without the need to use hand curated, hard-coded
filter lists. Finally, the lightweight nature of reader mode
content results 1n huge performance gains, with up to 27x
page load time speedup on average, together with up to 84x
bandwidth and 2.4x memory reduction on average.

FIG. 2 1s a signal diagram 200 of an example interaction
between a web browser attention application with reader
mode-optimized render pipeline and a web server media site
publisher 1n accordance with some embodiments. The
browser requests a hypermedia document from the site
publisher at operation 204. The operation 204 may be a GET
request over HT'TP or other suitable network communica-
tion protocols. In response, the site publisher returns the
hypermedia document to the browser 1n the operation 206.

Once the browser has the hypermedia document, 1t can
perform a classification step 208 to determine 11 the hyper-
media document 1s compatible with reader mode (also
referred to herein as the hypermedia document being “read-
able”). In some implementations, only a subset of the
hypermedia document may be compatible with reader mode
in this operation. In some implementations, the classification
operation 208 1s performed solely on the complete hyper-
media document (e.g., based on the types and content of
HTML tags in the hypermedia document).

Classification may be predicted based on the HI'ML of the
hypermedia document but not based strictly on the HIML
alone. Certain display features, as one example, could be
predicted from the hypermedia document and relied upon to
decide whether the overall page 1s readable without neces-
sarily rendering the hypermedia document. For example,
whether an 1mage 1s present at a certain x/y oflset may be
revealed by the HI'ML and indicate a compatible page. In
other examples, 1dioms and patterns can be used to predict
the display of the page given the HIML of the page. A hero
section, 1f present, may indicate that a page 1s readable. In
another example, 11 a form element 1s near the top of the
page, this might indicate that interactivity 1s important on the
page, and the page 1s thus not a good candidate for reader
mode. In other examples, a form at the bottom of the page
may indicate that interactivity 1s ancillary to the page and
thus may be omitted from the reader mode version without
harming page usability.

In other implementations, the classification operation 208
includes execution of some executable code and layout, for
example first-party scripts could be allowed to run while still
blocking third-party scripts or scripts that make network
requests to third-party sites. Aspects of the layout or display
teatures could be used to recognize articles or other content
likely to have readable subsets.

If the operation 208 does classify the hypermedia docu-
ment as being reader mode readable, then a tree transduction
operation 210 extracts the page elements found to constitute
the readable subset of the hypermedia document received in
operation 206. In implementations, the tree transduction
operation 210 greatly simplifies the hypermedia document
by remove most of the markup. Various tree transduction
strategies may be used (e.g., Readability]S, DOM Distiller,
Safari Reader View, BoilerPipe, and others), each having
tradeolls with respect to the particular type of content
deemed to have readable content and the speed with which
the transducer runs on the hypermedia document. Distinct
from the classification operation 208, which only deter-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

mined whether a hypermedia document was “readable,” the
tree transduction operation 210 takes the hypermedia docu-
ment as mput and the output 1s the readable subset of the
page, 11 any. Features that may be taken into account when
determining whether a markup tag 1s included 1n the set of
reader content not culled from the hypermedia document
include: normalizing the contents of the text-and-link dense
clement to remove styling and other markup; looking for
near-by 1mages for inclusion; using text patterns identifying
the page’s author, source, and publication date; elements
with high text and anchor density; presentation-level heu-
ristics, including where elements appear on the page and
what elements are hidden from display by default; number
of words and link density features. Tree transducing
approaches that rely simpler calculations (e.g., word count
inside a markup tag) are cheaper computationally and likely
will run faster than more complicated calculations.

In some i1mplementations, accessibility {features are
emphasized 1n the tree transduction operation 210. Acces-
sibility features includes features that may assist users with
communicative and/or motor control impairment 1ssues who
may not be able to read or interact with an attention
application 1n the normal way (e.g., users who are vision
impaired, deaf, unable to use mouse, keyboard, or trackpad.,
etc.). Typically, these users employ accessibility settings on
their operating system and/or stand-alone software to help
convey the information of the website (e.g., braille pad,
text-to-speech, magnification of text and/or video, special-
1zed input controls, etc.). One way these solutions may work
on a web page 1s to render HTML diflerently than normal to
emphasize features relevant to accessibility. It can be difhi-
cult to accurately render a modern web page 1n the desired
accessible way due to page complexity (e.g., complex bloat
page). The reader mode version, on the other hand, 1s likely
to work more seamlessly with the accessibility due to the
clean, semantic markup of the reader page 1n comparison to
the bloat page. In addition, the tree transduction 210 opera-
tion may alter features including font size, video size, and
more to aid 1n accessibility, and may present user controls to
refine and/or set user accessibility preferences in the reader
mode presentation of the page.

In the requesting operation 212, the attention application
tetches only the resources included in the simplified reader
mode version of the hypermedia document resulting from
the tree transduction operation 210. The browser receives
the resources 1n operation 214 and renders only those page
clements to the user 1n operation 216.

FIG. 3 illustrates two flowcharts comparing an example
workilow of an attention application with reader mode-
optimized render pipeline against a workiflow of an attention
application without reader mode-optimized render pipeline
in accordance with some embodiments. The reader mode
optimized pipeline starts at 302 wherein a hypermedia
document 304 1s received by the system. A classifier 306
determines whether the hypermedia document 304 1s com-
patible with reader mode (e.g., 1s the document “readable™).
Such a determination may be made 1n a varniety of ways. One
way 1s the novel classification system disclosed herein and
described 1n more detail with reference to FIG. 5.

Decision block 308 depends on the output of the classifier
at 306. I1 the classifier determines the hypermedia document
does not have a readable subset, then the workilow proceeds
to 310, wherein the attention application begins to render the
hypermedia document, including formation of the DOM,
execution of JavaScript or other executable code (e.g., web
assembly), performing layout operations, etc. As the execut-
able code runs and the page layout executed, network calls

US 11,960,334 B2

9

will be made at 312 to fetch resources, obtain ads, make calls
to third-party trackers, potentially load other web pages or
pop-up ads, etc. (e.g., 1t loads the bloat page). After the full
page load, the workflow returns to 304 to receive the next
hypermedia document in the user’s browsing session. This
workiflow path 1s similar to what would happen with the

non-optimized pipeline in every case, whether a hypermedia
document 1s deemed readable or not.

The other option at 308 if the classifier does determine the
hypermedia document has a readable subset 1s to proceed to
tree transduction at 314. The term “tree” here refers to the
data structure of the DOM, and “transduction” refers to the
removing ol page elements in the DOM that are not likely
to 1nclude content of interest to the reader. It should be noted
that, at this point in the workflow, the user has requested the
hypermedia document 304 but nothing has yet been visually
rendered to the user. Speed 1n loading media content 1n an
attention application, 1n many cases, 1s a high value perfor-
mance metric. Generally, the faster the content loads, the 2¢
better. If content 1s slow to load, then a user becomes
increasingly likely to “bail” on reading the content and to
make another request to receive a different hypermedia
document 1n the hopes that 1t will load faster. For many
users, the “bail” point may be very short (e.g., not more than 25
several seconds). Any step that slows page rendering there-
fore may be considered materially detrimental to the user
experience. For this reason, tree transduction techniques
may be chosen that speed selection and extraction of page
clements deemed readable. For example, counting words 30
and word density are likely faster (and less computationally
expensive) than more complicated calculations. Although
tree transduction 314 occurs before visual rendering of the
media content, and thus may be seen as a performance risk,
as shown herein, the performance costs of classitying and 35
transducing before rendering are highly likely far out-
weighed by the performance savings from skipping opera-
tion 312 due to avoiding rendering the full bloat page and
tetching resources required to do so.

Upon completion of the tree transduction 314, a reader 40
mode version of the hypermedia document exists at 316. The
attention application can then fetch resources referenced 1n
the reader mode version only, without incurring the costs of
tetching and rendering the 1nitial hypermedia document 304.
Render operation 320 1s also much faster than render opera- 45
tion 310 because only a subset of the page elements need be
rendered, and likely a small subset on modern web pages.
Thus, time to render to operation 320 is likely far faster than
time to render at operation 312. The user 1s thus presented
with a faster, safer, more private, more readable experience 50
than in the non-optimized pipeline.

Sometimes, a user may decide that reader mode 1s not
wanted on a certain page or domain. It may be the case that
reader mode 1s skipping content that 1s of interest to the user,
or that an app running on the page 1s not behaving as 55
expected and the user wishes to run 1t without reader mode.

A user interface element (e.g., a button) may be presented to
the user 1n operation 320 such that the user may, via the user
interface element, place a domain on a list of domains on
which reader mode should not be applied. In one implemen- 60
tation, the button moves a domain from which the hyper-
media document that was used to generate the reader mode
320 1s the domain moved to the blacklist. Thus, the next time
the pipeline encounters the blacklisted domain at 308,
execution of the workilow will proceed to 310 even 11 the 65
classifier would have otherwise determined there to be a
readable subset of the hypermedia document 304.

10

15

10

Turning now to the non-optimized pipeline starting at
322, the worktlow starts with the same hypermedia docu-
ment 304 as 1n the optimized pipeline case. The worktlow
then renders the page at 324, running executable programs
referenced 1n the hypermedia document 304, and performing
layout operations, which consumes system resources and
takes time. Fetching operation 326 makes network requests
to obtain the resources needed for rendering operation 324
(and may occur before operation 324 has completed). Opera-
tion 326 includes the privacy-harming requests, such as
those to third-party trackers that conduct surveillance all
over the web and mine the user’s activity and classily the
user (e.g., classified as belonging to a particular consumer
group).

After the rendering operation 324 and fetching operation
326, a classifier 328 determines 1f there 1s a readable subset.
At 330, 1f there 1s at least a readable subset, a reader mode
button 1s shown to the user at 334. At 330, 1f there 1s not a
readable subset, then no reader mode button 1s shown at 332
and the workilow returns to the next hypermedia document
at 304. I the user clicks or taps the reader mode button
presented at operation 334, then a tree transduction opera-
tion 336 extracts the reader mode subset 338, fetches
resources for reader mode at 340, and renders the reader
mode at 342. The worktlow path to 342 1s thus considerably
longer and slower than in the optimized pipeline.

FIG. 4 1s a block diagram 400 of example components of
an optimized reader mode pipeline 406 with a reader mode-
optimized render pipeline 1n relation to a site publisher 402.
The optimized reader mode pipeline 406 receives a hyper-
media document 404 via a network data transceiver 408. The
network data transceiver 408 may be included as part of
generalized computer hardware running the optimized
reader mode pipeline 406, such as an ethernet or Wi-Fi
connection communicating on the internet. Other types of
network data transceivers are possible, depending on the
type of hardware running the optimized reader mode pipe-
line 406, such as a serial bus connection recerving the media
content from another computer (e.g., an e-reader, music
player, etc. loading content). The optimized reader mode
pipeline 406 may be part of an attention application (e.g., a
web browser running on desktop or mobile hardware) or 1t
may be part of a content distribution network (CDN) that
receives the hypermedia document 404 from the site pub-
lisher 402 and serves a reader mode version of the page to
the user 420.

The network data transceiver 408 passes the hypermedia
document 404 to the classification engine 410. The classi-
fication engine 410 may determine whether the hypermedia
document 404 1s “readable” based on a criteria, such as the
classification scheme disclosed herein with reference to FIG.
5. Depending on the outcome of the classification engine,
the hypermedia document 404 will be sent either to the tree
transducer if readable or the code execution engine 412 it
not readable.

The tree transducer 414 takes the hypermedia document
404 and extracts the readable subset. Several solutions exist
for the extraction, including, for example, Readability.js,
BoilerPipe, DOM Distiller, etc. Selection of the extraction
algorithm may be optimized for various performance met-
rics (e.g., speed, resource consumption, etc.) but in general
produce mostly similar reader mode versions of the page.
When the reader mode version of the page has been created,
it 1s forwarded to the render engine 416. The render engine
416 requests network data resources included 1n the reader
mode version of the hypermedia document via the network
data transceiver 408, which are expected to be significantly

US 11,960,334 B2

11

less than the mitial hypermedia document 404 and may
involve skipping all third-party network requests to web
trackers. As the network resources are received, the reader
mode page 1s rendered to the user 420 by the render engine
416.

Several of the components disclosed herein may have
more than one “mode” optimized for a certain type of
content consumption. Aspects of the classification and tree
transduction that may work well on one type of content such
as news articles, may not necessarilly work well on other
types ol content, such as social media feeds or message
boards. Social media feeds and message boards tend to have
certain types of content that 1s known to be of interest to
users such as author name and avatar, timestamp of a post,
content of a post, name of thread 1n which the content was
posted, whether the post or comment has a score associated
with 1t, number of replied to a post, etc. The classification
engine 410 and tree transducer 414 could thus have a
“message board” and/or “social feed” optimized modes
wherein page elements representing this specialized content
remain 1n the reader mode version of the page. The com-
ponents may switch into the specialized mode based on the
domain from which a page has been retrieved (e.g., reddit-
com for message boards, twitter.com for a social feed)
and/or based on an analysis of the hypermedia document
showing 1t contains elements indicating presence of the
specialized content.

If the optimized reader mode pipeline 406 1s a CDN, then
the process 1s modified slightly. The optimized reader mode
pipeline 406 1s a piece of network infrastructure that 1s
located between the user 420 and the site publisher 402.
Generally, a CDN exists to bring performance gains by
caching assets from the site publisher 402 that are likely to
be requested by many users (e.g., a site banner). If the CDN
1s located closer to the user 1n terms of network topology,
then a single request from the CDN to the site publisher 402
to get the asset avoids longer and slower requests from the
user 420 to the site publisher 402. If there 1s a network of
CDN servers, then most users can get the assets faster and
with less resource strain on the site publisher 402.

If the optimized reader mode pipeline 406 1s the CDN,
then 1t 1s possible to receive a request from the user 420 for
the hypermedia document 404, to receive the hypermedia
document 404 from the site publisher 402 (or to retrieve a
previously cached copy thereof), convert the hypermedia
document 404 to a reader mode version, and return only the
reader mode version to the user 420. Thus, by using the
optimized reader mode pipeline CDN, the user 420 need not
run 1ts own optimized reader mode pipeline but can still
receive reader mode versions of hypermedia documents.

This implementation differs from other implementations
disclosed herein 1n that the process begins with the a request
by the user 420 to the network data transceiver 408 for the
hypermedia document 404, followed by the network data
transceiver requesting the hypermedia document 404 from
the site publisher (or retrieving a previously cached copy, 1T
a fresh one 1s available) before submitting the hypermedia
document 404 to the classification engine 410. The CDN
implementation also differs from the other implementations
in that after the tree transducer 414 generates the reader
mode version of the hypermedia document 404, the reader
mode version 1s not sent to the render engine 416, but rather
1s transmitted to the user via the network data transceiver
408.

FIG. 5 1s a table 500 of an example classifier design for
an attention application with a reader mode-optimized ren-
der pipeline. As noted herein, there 1s more than one

10

15

20

25

30

35

40

45

50

55

60

65

12

approach to determining whether a hypermedia document
has a readable subset of page elements and thus should be
converted to reader mode or whether the page should be
rendered as 1t was received. A classifier that does not
correctly determine whether a page 1s readable 1n reader
mode harms the user experience. Pages that would have
been readable but were classified as not slow load times and
deliver distractions unwanted by the user not related to the
content of interest. Pages that should not have been rendered
in reader mode but were classified as readable may present
an unusable page to the user, which would be likely be
regarded as a major design tlaw.

The more accurate the classifier, the more likely the user
1s going to be able to run 1n “always on” mode. “Always on”
mode means herein that the default behavior of the attention
application 1s to try to render in reader mode and the
attention application will try reader mode first on every page
visited by the user before falling back to normal rendering
if needed. Always on will result 1n the best speed, resource
savings, and privacy enhancement over a non-optimized
pipeline, but users may not like always on mode 11 they are
shown, pages that omit content in which they users are
interested (e.g., display only part of the text of an article),
incomprehensible layouts, or otherwise too frequently cause
impairment to their attention focused on the content. On the
other hand, *“‘always on” mode unlocks the performance
gains of the optimized pipeline architecture disclosed herein
because those gains arise from the fetching and rendering of
far fewer resources compared to rendering the bloat page
due to converting the hypermedia document to reader mode
and avoiding rendering the bloat page at all.

The table 500 illustrates a criteria based on various
markup tags that may be found in a hypermedia document
that correctly determines whether a page has a readable
subset well enough to be used 1n “always on” mode. Each
markup tag in the criteria 500 1s associated with a measure-
ment value. In some cases, the measurement 1s simply the
number of times the markup tag appears 1n the hypermedia
document (e.g., <p>, <article>, , etc.). In other cases,
the measurement 1s a binary value representing whether the
hypermedia document supports a certain feature, such as
Google AMP or Facebook Channel ID.

Once the criteria described 1n table 500 has been collected
for a particular hypermedia document, the resulting data 1s
fed into the classifier. In one implementation, the classifier
uses a random forest classifier, trained on a hand-labeled

data set. The data set of websites for the random forest
classifier were chosen to include three sets of 1,000 pages
cach. The first set of 1,000 pages are from the RSS feeds of
popular news sites (e.g., The New York Times, ArsTech-
nica), which were expected to be frequently readable. The
second set of 1,000 pages were the landing pages from the
Alexa 1K, which were expected to be rarely readable. The
final set of 1,000 pages were selected randomly from non-
landing pages linked from the landing pages of the Alexa
5K, which were expected to be sometimes readable. In other
implementations, the classifier may be trained 1n other ways,
such as with other machine learning algorithms and/or
differently chosen data sets.

A crawler was built that, given a URL to a web page,
recorded both the mitial hypermedia document response,
and a screenshot of the final rendered page after all resources
had been {fetched and rendered, and after JavaScript
executed. Of the set of 3,000 websites, 167 pages did not
respond to the crawler, thus the set was reduced to 2,833.
The data set 1s summarized as follows:

US 11,960,334 B2

13
TABLE 1

Page Data Set Number of pages % Readable

Article pages 945 92.9%
Landing pages 932 1.5%
Random pages 956 21.8%
Total 2,833 38.8%

To determine whether a page 1in the data set was “read-
able,” each final page was manually considered and given a
Boolean label of whether there was a subset of page content
that was readable. A final web page was considered readable
if 1t met the following criteria: the primary utility of the page
was 1ts text and 1mage content and not interactive function-
ality; the page contained a subset of content that was usetul,
without being sensitive to 1ts placement on the page, and the
usefulness of the page’s content was not dependent on its
specific presentation or layout on the website. Based on
these criteria, single page application, index pages, and
pages with complex layout were generally labeled as not-
readable, while pages with generally static content, and lots
of text and content depicting media, were generally labeled
readable.

The classifier takes as mput a string, depicting an HI'ML
document, and returns a Boolean label of whether there 1s a
readable subset of the document. The input to the classifier,
it should be clear, 1s the mitial hypermedia document
recetved from a web server, and not the final state of the
website after JavaScript (or other program) execution (e.g.,
a current state of a DOM).

Speed 1s an 1mportant feature of the classifier design
disclosed herein because document rendering i1s delayed
during the classification process. The 21 features 1llustrated
in table 500 were thus selected to be extractable quickly, and
the criteria 500 does not include complex calculations that
could be computationally expensive. Source code for an
example implementation of the classifier 1s included herein
as Appendix A. These classification results were found to be
better than other available classifiers.

In another implementation, instead of the criteria 500, the
classifier operates on markup features. Markup features are
a set ol information about the hypermedia document that
includes markup tags (e.g., HIML, script tags, style tags,
content tags, etc.) but can also include other information 1n
addition to the tags themselves. Some markup features that
are not tags include the URL of the hypermedia document.
The URL may include mnformation that could help a clas-
sifier determine that the hypermedia document referred to by
the URL 1s or 1s not compatible with reader mode. There
could be a list of URLs known to not be compatible with
reader mode, and thus the classifier may obtain this list and
check whether a current URL should be considered not
readable, thus saving on classification time. In other imple-
mentations, a URL could be deemed readable based on the
presence of a word 1n the URL, such as “article.” In yet other
implementations, the presence of a keyword i the URL
could be given weight in the classifier, but 1s not necessarily
dispositive of the 1ssue whether the hypermedia document 1s
readable or not.

FIG. 6 1s a plot 600 illustrating performance characteris-
tics of the novel classifier including time to fetch and
classily an initial hypermedia document of an attention
application with a reader mode-optimized render pipeline.
As noted herein, the classifier operates on complete hyper-
media documents before they are rendered. As such, the
attention application 1s not able to render the page until the

10

15

20

25

30

35

40

45

50

55

60

65

14

entire hypermedia document has been fetched. This 1s unlike
non-optimized reader mode pipelines where pages may be
progressively rendered as a speed optimization as segments
of the hypermedia document are received, parsed, and
resources therein fetched. There 1s thus a tradeoil between
rendering delay and network and device resource use, since
any page that 1s reader mode readable will fetch and process
far fewer resources. I the rendering delay while waiting for
classification to finish 1s too long, 1t could outweigh savings
from “always on” reader mode.

In the plot 600, rendering delay caused by the classifier 1s
illustrated under several representative network conditions.
The rendering delay 1s equal to the time to fetch the entire
initial hypermedia document and complete classification.
The data presented in the plots 600 shows the rendering
delay imposed 1s small, specifically compared to the dra-
matic performance improvements delivered when a page 1s
readable.

The curve 602 shows how long the classifier took to
determine 1f a parsed hypermedia document was readable.
The classifier took 2.8 ms on average and 1.9 ms 1n the
median case. The curve 604 shows a simulation cost time of
serving each page from a locally hosted web server, which
allowed for accounting of the fixed overhead in establishing
the network connection, and similar unrelated browser
bookkeeping operations. The replay time was 22.3 ms on
average and 15.5 ms median time.

The next two curves, 606 and 608 represent two selected
network environments of different network conditions and
device capabilities web users are likely to encounter: a fast,
domestic broadband link with 50 Mbps uplink/downlink
bandwidth and a 2 ms latency (606), and a simulated 3G
network with a default 3G preset with 780 kbps downlink,
330 kbps uplink, 100 ms packet delay 1n either direction and
no additional packet loss. Downloading the pages on this
connection took 1,372 ms on average and 652 ms median for
the broadband (606) and 4,023 average and 2,516 median
for the 3G connection (608).

Overall, the approximately 2.8 ms taken for an average
document classification 1s a tiny cost compared to just the
initial hypermedia document download on reasonably fast
connection. The data 1s summarized as follows.

TABLE 2

Measurement # measured # readable % readable
Popular pages 42,986 9,653 22.5%
Unpopular pages 40,908 8,794 21.5%
Total: Random 83,894 18,457 22.0%
crawl

Reddit linked 3,035 1,260 41.51%
Twitter linked 494 276 31.2%
RSS linked 506 331 65%
Total 4,035 1,867 46.27%

FIG. 7 1s an example signal diagram 700 illustrating
application of a reader mode optimized pipeline including a
partial render of a web page based on a partial render of a
web page based on executing only a subset of page
JavaScript code, by predicting which JavaScript units will
result in additional, “readable” page text. In other examples,
without predicted JavaScript execution, the classification
parser operated solely on a hypermedia document recerved
from a server, returning a Boolean to indicate the presence
of a readable subset 1n the hypermedia document. In the
example pipeline without predicted JavaScript, there was no

US 11,960,334 B2

15

running executable code (e.g., JavaScript, web assembly) in
the attention application or performing layout or style opera-
tions. Among the benefits of running the classification parser
only on the hypermedia document itself are speed, reduced
resource use, safety, and privacy. In the workflow described
with reference to FIG. 7, on the other hand, the parser may
not operate solely on the hypermedia document recerved
from the site publisher. Instead, a limited selection of
predicted executable code could be run betfore the classifi-
cation process.

Much of the securnity and privacy risk from runmng
JavaScript or other executables in the browser arises from
triggering network requests to third parties who are
unknown to the user and who seek to iniringe the user’s
privacy by triggering the network requests. The mere request
itself can leak sensitive mformation pertaining to the user,
cven 1f only from a fingerprint of an HTTP request header.
The third-party requests could also reveal sensitive infor-
mation about the user such as imnformation based on cookies
accumulated during the user’s prior browsing sessions and
may be able to access sources of information private to the
user (e.g., query log, browsing history, etc.). The third-party
trackers essentially add no value to the user’s experience but
consume resources (computing and bandwidth), slow page
loads, and harm security and privacy.

Thus, a strategy of avoiding the third-party network
requests altogether 1s an attractive option for a user con-
cerned about and wishing to improve safety and privacy. The
upshot of deciding not to load any executable code or style
at all, however, could also have drawbacks. Some execut-
able code might actually load content of interest to the user.
By not running the executable code, the user would miss
content referenced therein 1n when reader mode. Some pages
might be readable, but only if certain key executable code 1s
run. There could also be layout operations and page presen-
tation that the user wishes to have that would be left out it
the page has not been rendered at all before going into the
classifier.

There 1s thus an opportunity, 1n some 1implementations, to
run only a subset of the executable code referenced by the
hypermedia document, partially render a page based
thereon, and then run the classifier to determine 1if there 1s a
readable subset. Choosing which parts of the hypermedia
document scripts to run 1s also referred to herein as predicted
JavaScript. The signal diagram 700 1llustrates such a pro-
cess. The request 704 and return 706 operations are the same
as 1n the other implementations. At 708, the worktlow
includes a parsing operation 708 to parse the hypermedia
document for only designated pairs of markup, style, and/or
script tags. The designated pairs may include pre-learned
tags referencing familiar JavaScript or other executable
libraries and page markup and/or text that those libraries use
for generating readable content. Examples of designated
tags include tags with URLs that resemble angular.js and
page text with variable name text that resembles Angular
(e.g., {{variable-name} } text). For example, if a script tag
includes a URL to a script resource with the word “angular™
in the path and there 1s a text tag with the double curly braces
format, then it can be implied that there 1s a text substitution
that would occur 1n the curly brackets 1f the script with the
word angular has been run. Thus, this 1s a candidate to run
predictive JavaScript before running the resulting document
into the classifier.

If the attention application’s classifier observes instances
ol the designated pairs, then the attention application fetches
those libraries at 710, either from the site publisher’s server
or from another script hosting server. If the number of

10

15

20

25

30

35

40

45

50

55

60

65

16

recognized tags and libraries 1s small, then 1t may introduce
only minimal DOM changes and thus incur only a small
computing resource and time overhead. The increase 1n costs
may still be significantly outweighed by the savings in
avoilding the bloat page load.

In some implementations, the pre-learned pairs include a
subset of style features in the parsing operation 708.
Examples of style features not removed from the reader
mode version of the hypermedia document include brand
identity such as brand logo and/or color scheme, page
headers, page footers, etc. The style features may be chosen
based on known elements on popular pages or may be
chosen based on a combination of HTML and CSS feature
analysis. The resulting reader mode page would thus retain
the feel of the much more minimalist reader mode page, but
with at least some presentation designating the origin of the
media content.

In another implementation, the pre-learned pairs include
a subset of navigation features 1n the parsing operation 708.
Examples of navigation features retained 1n the reader mode
version of the hypermedia document include a top naviga-
tion bar, page footer navigation, “related articles” content
identified and extracted to a navigation area, links from
within content text extracted to a “related articles” menu. As
with the implementation wherein the reader mode page
retains style information, the resulting reader mode page
would thus retain the feel of the much more mimmalist
reader mode page, but with at least some navigation pre-
sentation for the user to navigate away from the page if
desired and to related content that may be of interest to the
user.

At 712, the browser executed the retrieved scripts to
generate text and page markup expected to be readable. The
operation 712 may include layout operations and execution
of third party network request, 1f they are contained 1n the
tamiliar JavaScript libraries. On the other hand, the familiar
JavaScript libraries may be chosen to not include any third
party network requests. After tree transduction at 714, the
browser requests resources for reader mode at 716 and
recerves the resources at 718, then renders reader mode at
720.

FIG. 8 1s a flowchart of a method 800 of an optimized
reader mode on an attention application. The method 800
includes a receiving operation 802 to receive a request from
a user of the attention application for media content. The
receiving operation may include clicking or tapping on a
hyperlink or other signifier that media content 1s available.
A transmitting operation 804 transmits a request to a media
content server for a hypermedia document referencing the
media content, the hypermedia document including a set of
markup features. The markup features for example may be
HTML tags determining how the content in the hypermedia
document should be displayed to the user of the attention
application. Other types of markup features may also be
used.

A determining operation 806 determines, based at least 1n
part on the set of markup features, whether the hypermedia
document satisfies a reader mode condition. The determin-
ing operation 806 may be based on the number and type of
markup features included in the hypertext document. In
other implementations, the determining operation 806 1is
based at least 1n part on the contents of the markup tags (e.g.,
the number of words enclosed 1n a set of paragraph tags).
Machine learning may be used to perform the determining
step 806, such as by training the machine by manually
reviewing and classifying a set of hypermedia documents. In
implementations, the output of the determining operation

US 11,960,334 B2

17

806 1s a binary value indicating whether the hypermedia
document satisfies the reader mode condition or not.

A generating operation 808 generates, before rendering
the hypermedia document, a reader mode version of the
hypermedia document by extracting a subset of the markup
features 11 the hypermedia document satisfies the reader
mode condition. As used herein, the term “extracting” may
refer to stripping some sets ol markup features from the
hypermedia document but leaving others (e.g., stripping
markup tags that are not likely to include content of interest
to the user). Extracting may include modification of markup
features and content based therein, such as combination of
markup tags containing article text. Extracting, in other
implementations, may include addition of markup tags, such
as navigation, accessibility, video controls, etc.

A rendering operation 810 renders the reader mode ver-
s1ion of the hypermedia document to yield a rendered reader
mode version of the hypermedia document. The rendering
operation may, for example, be performed by a web browser
or other content portal (e.g., online forum browser) to build
a page (e.g., to form a DOM) based on the reader mode
version ol the hypermedia document. If the hypermedia
document includes executable code, style information, etc.,
then the rendering operation 810 may run that code and
perform the layout operations. Not all layout, style, efc.
markup information need be removed from the hypermedia
document to form the reader mode version, although 1t may
be. A displaying operation 812 then displays the rendered
reader mode version of the hypermedia document to the user
of the attention application.

FIG. 9 1s a flowchart 900 of an example method of
classitying a hypermedia document as compatible with an
attention application reader mode. A recerving operation 902
receives a complete hypermedia document, the complete
hypermedia document having not been rendered by an
attention application. The type of hypermedia document
received may depend on the type of attention application
(c.g., a web page for a web browser, an e-book for an
e-reader, etc.). A parsing operation 904 parses the complete
hypermedia document to yield a feature report, the feature
report including a prevalence of a set of hypermedia features
in the complete hypermedia document.

A classitying operation 906 classifies the complete hyper-
media document as satistying a reader mode condition based
on training on a labeled dataset applied to the feature report.
A transmitting operation 908 transmits the complete hyper-
media document to a tree transducer if the complete hyper-
media document satisfies the reader mode condition to yield
a reader mode version of the hypermedia document. The
transmitting operation 908 may be by a content distribution
network server situated between the user and the content
provider. Instead of merely caching the hypermedia docu-
ments and assets referenced therein, the content distribution
network server may perform the method 900 and distribute
only the reader mode version of the hypermedia document
to the end user. Thus, improvements to the operation of the
classifier need not be pushed out to all attention applications,
but rather the attention applications can make their network
requests via the content distribution network and receive
already “readerized” versions of the all the media content,
regardless of whether their clients are configured with the
optimized reader mode pipeline.

FIG. 10 1llustrates a system 1000 that may be helptul in
implementing an attention application with a reader mode-
optimized render pipeline. FIG. 10 illustrates an example
system (labeled as a processing system 1000) that may be
usetul i implementing the described technology. The pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

cessing system 1000 may be a client device, such as a smart
device, connected device, Internet of Things (IoT) device,
laptop, mobile device, desktop, tablet, or a server/cloud
device. The processing system 1000 includes one or more
processor(s) 1002, and a memory 1004. The memory 1004
generally includes both volatile memory (e.g., RAM) and
nonvolatile memory (e.g., flash memory). An operating
system 1010 resided in the memory 1004 and 1s executed by
the processor 1002.

One or more application programs 1012 modules or
segments, such as reader mode classifier 1044 and tree
transducer 1046 are loaded in the memory 1004 and/or
storage 1020 and executed by the processor 1002. In some
implementations, the digital asset wallet 1044 1s stored 1n
read-only memory (ROM) 1014 or write once, read many
(WORM) memory. Data such as extrinsic event data sources
may be stored in the memory 1004 or storage 1020 and may
be retrievable by the processor 1002 for use by digital asset
wallet 1044 and the blockchain manager 1046, ctc. The
storage 1020 may be local to the processing system 1000 or
may be remote and communicatively connected to the
processing system 1000 and may include another server. The
storage 1020 may store resources that are requestable by
client devices (not shown). The storage 1020 may include
secure storage such as one or more platform configuration
registers (PCR) managed by one or more trusted platform
modules (TPMs), which may be implemented 1n a chip or by
the trusted execution environment (TEE).

The processing system 1000 includes a power supply
1016, which 1s powered by one or more batteries or other
power sources and which provides power to other compo-
nents of the processing system 1000. The power supply 1016
may also be connected to an external power source that
overrides or recharges the built-in batteries or other power
sources.

The processing system 1000 may include one or more
communication transceivers 1030 which may be connected
to one or more antenna(s) 1032 to provide network connec-
tivity (e.g., mobile phone network, Wi-Fi®, Bluetooth®,
etc.) to one or more other servers and/or client devices (e.g.,
mobile devices, desktop computers, or laptop computers).
The processing system 1000 may further include a network
adapter 1036, which 1s a type of communication device. The
processing system 1000 may use the network adapter 1036
and any other types of communication devices for estab-
lishing connections over a wide-area network (WAN) or
local area network (LAN). It should be appreciated that the
network connections shown are exemplary and that other
communications devices and means for establishing a com-
munications link between the processing system 1000 and
other devices may be used.

The processing system 1000 may include one or more
input devices 1034 such that a user may enter commands and
information (e.g., a keyboard or mouse). Input devices 1034
may further include other types of input such as multimodal
input, speech mput, gratlit1 input, motion detection, facial
recognition, physical fingerprinting, etc. These and other
input devices may be coupled to the server by one or more
interfaces 1038 such as a serial port interface, parallel port,
umversal serial bus (USB), etc. The processing system 1000
may further mclude a display 1022 such as a touch screen
display.

The processing system 1000 may include a variety of
tangible processor-readable storage media and intangible
processor-readable communication signals including 1n vir-
tual and/or cloud computing environment. Tangible proces-
sor-readable storage can be embodied by any available

US 11,960,334 B2

19

media that can be accessed by the processing system 1000
and includes both volatile and nonvolatile storage media,
removable and non-removable storage media. Tangible pro-
cessor-readable storage media excludes intangible commu-
nications signals and includes volatile and nonvolatile,
removable and non-removable storage media implemented
in any method or technology for storage of information such
as processor-readable instructions, data structures, program
modules or other data. Tangible processor-readable storage
media 1includes, but 1s not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology,
CDROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
tangible medium which can be used to store the desired
information, and which can be accessed by the processing
system 1000. In contrast to tangible processor-readable
storage media, intangible processor-readable communica-
tion signals may embody computer-readable instructions,
data structures, program modules or other data resident 1n a
modulated data signal, such as a carrier wave or other signal
transport mechanism. The term “modulated data signal”
means a signal that has one or more of 1ts characteristics set
or changed 1n such a manner as to encode information 1n the
signal. By way of example, and not limitation, intangible
communication signals include signals traveling through
wired media such as a wired network or direct-wired con-
nection, and wireless media such as acoustic, RF, infrared,
and other wireless media.

In the foregoing specification, specific embodiments have
been described. However, one of ordinary skill in the art
appreciates that various modifications and changes can be
made without departing from the scope of the mvention as
set forth 1n the claims below. Accordingly, the specification
and figures are to be regarded in an illustrative rather than a
restrictive sense, and all such modifications are intended to
be mcluded within the scope of present teachings.

The benefits, advantages, solutions to problems, and any
clement(s) that may cause any benefit, advantage, or solu-
tion to occur or become more pronounced are not to be
construed as a critical, required, or essential features or
clements of any or all the claims. The invention 1s defined
solely by the appended claims including any amendments
made during the pendency of this application and all equiva-
lents of those claims as 1ssued.

Moreover 1n this document, relational terms such as first
and second, top and bottom, and the like may be used solely
to distinguish one entity or action from another entity or
action without necessarily requiring or implying any actual
such relationship or order between such entities or actions.
The terms “comprises,” “comprising,” “has”, “having,”
“includes™, “including,” “contains™, “contaiming” or any
other variation thereof, are intended to cover a non-exclusive
inclusion, such that a process, method, article, or apparatus
that comprises, has, includes, contains a list of elements does
not include only those elements but may include other
clements not expressly listed or inherent to such process,
method, article, or apparatus. An element proceeded b
“comprises . . . a’, “has . . . a”, “includes . . . a”,
“contains . . . a” does not, without more constraints, preclude
the existence of additional 1dentical elements in the process,
method, article, or apparatus that comprises, has, includes,
contains the element. The terms “a” and ““an’ are defined as
one or more unless explicitly stated otherwise herein. The
terms “‘substantially”, “essentially”, “approximately”,
“about” or any other version thereot, are defined as being
close to as understood by one of ordinary skill 1n the art, and

10

15

20

25

30

35

40

45

50

55

60

65

20

in one non-limiting embodiment the term 1s defined to be
within 10%, 1in another embodiment within 5%, 1n another
embodiment within 1% and 1n another embodiment within
0.5%. The term “coupled” as used herein 1s defined as
connected, although not necessarily directly and not neces-
sarily mechanically. A device or structure that 1s “config-
ured” 1n a certain way 1s configured 1n at least that way, but
may also be configured 1n ways that are not listed.
It will be appreciated that some embodiments may be
comprised ol one or more generic or specialized processors
(or “processing devices™) such as microprocessors, digital
signal processors, customized processors and field program-
mable gate arrays (FPGAs) and unique stored program
instructions (including both software and firmware) that
control the one or more processors to 1implement, 1n con-
junction with certain non-processor circuits, some, most, or
all of the functions of the method and/or apparatus described
herein. Alternatively, some or all functions could be 1imple-
mented by a state machine that has no stored program
instructions, or in one or more application specific integrated
circuits (ASICs), 1n which each function or some combina-
tions of certain of the functions are implemented as custom
logic. Of course, a combination of the two approaches could
be used.
Moreover, an embodiment can be implemented as a
computer-readable storage medium having computer read-
able code stored thereon for programming a computer (e.g.,
comprising a processor) to perform a method as described
and claimed herein. Examples of such computer-readable
storage mediums include, but are not limited to, a hard disk,
a CD-ROM, an optical storage device, a magnetic storage
device, a ROM (Read Only Memory), a PROM (Program-
mable Read Only Memory), an EPROM (Erasable Program-
mable Read Only Memory), an EEPROM (Electrically
Erasable Programmable Read Only Memory) and a Flash
memory. Further, it 1s expected that one of ordinary skill,
notwithstanding possibly significant eflort and many design
choices motivated by, for example, available time, current
technology, and economic considerations, when guided by
the concepts and principles disclosed herein will be readily
capable of generating such software instructions and pro-
grams and ICs with minimal experimentation.
The Abstract of the Disclosure 1s provided to allow the
reader to quickly ascertain the nature of the technical dis-
closure. It 1s submitted with the understanding that it will not
be used to iterpret or limit the scope or meaning of the
claims. In addition, 1n the foregoing Detailed Description, 1t
can be seen that various features are grouped together in
various embodiments for the purpose of streamlining the
disclosure. This method of disclosure 1s not to be interpreted
as reflecting an intention that the claamed embodiments
require more features than are expressly recited in each
claiam. Rather, as the following claims reflect, inventive
subject matter lies in less than all features of a single
disclosed embodiment. Thus the following claims are
hereby incorporated into the Detailed Description, with each
claim standing on 1ts own as a separately claimed subject
matter
The mvention claimed 1s:
1. A method for an optimized reader mode-optimized
pipeline on an attention application, the method comprising;:
recerving a request from a user of the attention application
for media content during an attention session;

transmitting a request to a media content server for an
initial hypermedia document referencing the media
content, the initial hypermedia document 1including a
set of markup features;

US 11,960,334 B2

21

determining, by a classifier and prior to generating a
document object model (DOM) based on the initial
hypermedia document via tree transduction, that a
subset of markup features that are included 1n the set of
markup features satisty a reader mode condition;

extracting, by the classifier based at least 1n part on the
reader mode condition being satisfied, elements of the
initial hypermedia document and omitting elements of
the mitial hypermedia document outside the subset of
markup features to yield a reader mode hypermedia
document;

generating, by a tree transducer, without rendering the
DOM based on every markup feature of the set of
markup features of the initial hypermedia document
during the attention session, a reader mode DOM based
on the reader mode hypermedia document that omaits
the elements of the 1mitial hypermedia document;

rendering the reader mode DOM by fetching only
resources referenced by the reader mode hypermedia
document and not fetching features outside the subset
during the attention session; and

displaying a rendering of the reader mode DOM to the
user of the attention application during the attention
SesS101.

2. The method of claim 1, wherein rendering the reader

mode DOM comprises:

fetching resources associated with the reader mode hyper-
media document and does not fetch resources refer-
enced by the mitial hypermedia document that are
outside the subset of markup elements.

3. The method of claim 2, wherein rendering the reader

mode DOM comprises:

rendering the reader mode DOM by omitting web trackers
included in executable code referenced by the initial
hypermedia document.

4. The method of claim 1, wherein the attention applica-

tion 1s a web browser.

5. The method of claim 1, wherein generating the reader
mode hypermedia document comprises:

generating the reader mode hypermedia document that
includes accessibility features.

6. The method of claim 5, wherein the accessibility

features include video accessibility user controls.

7. The method of claim 5, wherein the accessibility
features include font size user controls.

8. The method of claim 5, wherein the accessibility
features include a text summarization tag containing a
consolidated version of text present 1n the mitial hypermedia
document.

9. The method of claim 1, wherein the elements omitted
from the initial hypermedia document to yield the reader
mode hypermedia document define style features of the
initial hypermedia document.

10. The method of claim 1, wherein the elements omitted
from the mitial hypermedia document to yield the reader
mode hypermedia document define navigation features of
the mitial hypermedia document.

11. The method of claim 1, wherein the elements omitted
from the initial hypermedia document to yield the reader
mode hypermedia document define embedded video fea-
tures of the mitial hypermedia document.

12. The method of claim 1, further comprising;:

receiving, from the user, an indication that future hyper-
media documents recerved from a same domain as a
domain that sent the initial hypermedia document
should not be rendered in reader mode; and

5

10

15

20

25

30

35

40

45

50

55

60

65

22

determiming, by the classifier, that another hypermedia
document does not satisly the reader mode condition,
the another hypermedia document being received from
the same domain that sent the hypermedia document.

13. A reader mode-optimized attention system, the system
comprising;

a network data transceiver that receives an nitial hyper-
media document from a media server over a network
during an attention session, the imtial hypermedia
document including a set of markup tags and hyper-
links to media content therein;

a processor connected to the network data transceiver and
a computer program memory storing instructions
which, when executed by the processor, implement:

a classification engine that determines, prior to generating,
a document object model (DOM) based on the nitial
hypermedia document, that the imitial hypermedia
document satisfies a reader mode condition based at
least 1n part on the set of markup tags and hyperlinks to
media content therein;

a tree transducer that:

(a) determines, based at least i part on determining that
the mitial hypermedia document satisfies the reader
mode condition, a subset of markup tags of the set of
markup tags of the initial hypermedia document that
satisfy the reader mode condition and extracts the
subset of markup tags to yield a reader mode hyper-
media document; and

(b) generates, without rendering the DOM based on every
markup tag of the set of markup tags of the initial
hypermedia document during the attention session, a
reader mode DOM based on the reader mode hyper-
media document that omits markup tags of the initial
hypermedia document outside of the subset of markup
tags; and

a render engine that generates, without rendering a DOM
based on the mnitial hypermedia document during the
attention session, a rendering of the reader mode DOM
based on the reader mode hypermedia document for
display to a user during the attention session.

14. The system of claam 13, wherein the reader mode
condition 1s satisfied based at least 1n part on presentation
properties of the set of markup tags.

15. The system of claim 14, wherein the presentation
properties include cascading style sheet (CSS) classes asso-
ciated with the mitial hypermedia document.

16. The system of claim 13, wherein the classification
engine applies a weighting to the set of markup tags to
determine whether the mitial hypermedia document satisfies
the reader mode condition, the weighting being a result of a
random forest classifier trained on a hand-labeled dataset of
websites.

17. The system of claam 13, wherein the classification
engine applies a reader mode criteria optimized for social
media content.

18. The system of claim 13, wherein the classification
engine determines whether one or more hypermedia docu-
ments received by the network data transceiver satisfies a
reader mode condition based on preference mput from the
user.

19. The system of claim 13, wherein the instructions,
when executed by the processor, further implement:

a speculative executable code identification engine to
identily a subset of executable code associated with the
initial hypermedia document 11 the initial hypermedia
document does not satisiy the reader mode condition,
the subset of executable code being rendered by the

US 11,960,334 B2

23

render engine to yield a partially rendered DOM, and
the partially rendered DOM being returned to the
classification engine for a determination of whether the
partially rendered DOM satisfies the reader mode con-
dition.

20. The method of claim 1, wherein determining that the
subset of markup features satisiy the reader mode condition
COmMprises:

evaluating a criteria that 1s based on a number of appear-

ances ol one or more markup tags 1n the nitial hyper-
media document, a number of text blocks that satisiy a
threshold character length 1n the imitial hypermedia
document, a number of words the initial hypermedia
document, an attribute in the initial hypermedia docu-
ment that indicates one or more preconfigured docu-
ment types, or a combination thereof.

21. The method of claim 1, wherein the omitted elements
outside the subset of markup features comprise elements
including a navigation button, a site banner, a user icon, an
advertisement, an author icon, a social sharing stats element,
navigation elements, comment sections, or a combination
thereof.

10

15

20

24

	Front Page
	Drawings
	Specification
	Claims

