Web Privacy Beyond Extensions:
New Browsers Are Pursuing
Deep Privacy Protections

Peter Snyder <pes@brave.com>
Privacy Researcher at Brave Software

mailto:pes@brave.com

In a slide...

e Web privacy is a mess.

e Privacy activists and researchers are limited by the
complexity of modern browsers.

e New browser vendors are eager to work with activists to
deploy their work.

Outline

1. Background
Extension focus in practical privacy tools

2. Present
Privacy improvements require deep browser modifications

3. Next Steps
Call to action, how to keep improving

Outline

1. Background
Extension focus in practical privacy tools

2. Present
Privacy improvements require deep browser modifications

3. Next Steps
Call to action, how to keep improving

Browsers are Complicated

| l

Privacy concern

>

Browser maintenance experience

Privacy concern

Extensions as a
Compromise

Browser maintenance experience

Privacy and
Browser Extensions

e Successes!
uBlock Origin, HTTPS Everywhere, Ghostery,
Disconnect, Privacy Badger, EasyList / EasyPrivacy, etc...

 Appealing
Easy(er) to build, easy to share

* Popular
Hundreds of thousands of extensions, Millions of users

Browser Extension =

Limitations y

 Limited Capabilities
Networking, request modification, rendering, layout,
image processing, JS engine, etc...

e Security and Privacy
Possibly giving capabillities to malicious parties

* Performance
Limited to JS, secondary access

Extensions vs Runtime

Browser maintenance experience

Under Explored Space

Browser maintenance experience

Outline

1. Background
Extension focus in practical privacy tools

2. Present
Privacy improvements require deep browser modifications

3. Next Steps
Call to action, how to keep improving

Under Explored Space

Browser maintenance experience

Runtime Privacy
Improvements

e AdGraph
Client-side, ML, graph-based tracking detection

e SpeedReader
Privacy enhancing content extraction
(i.e. “aggressive reader mode”)

Runtime Privacy
Improvements

e AdGraph
Client-side, ML, graph-based tracking detection

e SpeedReader
Privacy enhancing content extraction
(i.e. “aggressive reader mode”)

155vl [cs.CY] 22 May 2018

ADGRAPH: A Machine Learning Approach to
Automatic and Effective Adblocking

Umar Igbal

The University of lowa

Shitong Zhu

University of California, Riverside

ABSTRACT

Filter lists are widely deployed by adblockers to block ads and other
forms of undesirable content in web browsers. However, these filter
lists are manually curated based on informal crowdsourced feed-
back, which brings with it a significant number of maintenance
challenges. To address these challenges, we propose a machine
learning approach for automatic and effective adblocking called
ADGRAPH. Our approach relies on information obtained from mul-
tiple layers of the web stack (HTML, HTTP, and JavaScript) to train
a machine learning classifier to block ads and trackers. Our evalua-
tion on Alexa top-10K websites shows that ADGRAPH automatically
and effectively blocks ads and trackers with 97.7% accuracy. Our
manual analysis shows that ADGRAPH has better recall than filter
lists, it blocks 16% more ads and trackers with 65% accuracy. We also
show that ADGRAPH is fairly robust against adversarial obfuscation
by publishers and advertisers that bypass filter lists.

1 INTRODUCTION
Background. Adblocking deployment has been steadily increas-

Zubair Shafiq

The University of lowa

Zhiyun Qian

University of California, Riverside

Peter Snyder

Brave Software

Benjamin Livshits
Brave Software
Imperial College London

scripts [40, 49, 60], which can then be blocked by adblockers. Second,
some advertisers have started to manipulate the delivery of their
ads to bypass filer lists used by adblockers. For example, Facebook
recently obfuscated signatures of ad elements that were used by
filter lists to block ads. Adblockers, in response, quickly identified
new signatures to block Facebook ads. This prompted a few back
and forth actions, with Facebook changing their website to remove
ad signatures, and adblockers responding with new signatures [52].

Limitations of Filter Lists. While adblockers are able to block
Facebook ads (for now), Facebook’s whack-a-mole strategy points
to two fundamental limitations of adblockers. First, adblockers use
manually curated filter lists to block ads and trackers based on
informally crowdsourced feedback from the adblocking community.
This manual process of filter list maintenance is inherently slow
and error-prone. When new websites are created, or existing web-
sites make changes, it takes adblocking community some time to
catch up by updating the filter lists [1]. This is similar to other areas
of system security, such as updating anti-virus signatures [31, 42].
Second, rules defined in these filter lists are fairly simple HTTP and
HTML signatures that are easy to defeat for financially motivated
publishers and advertisers. Researchers have shown that random-

Current Tracking Blocking

e Extremely useful!

e Uses well known, targeted
approaches

e Vulnerable to practical
countermeasures

e \We see increasing evasion

e Two typical approaches...

G A

URL Based Blocking

* Representative Extension
AdBlock Plus + EasyPrivacy

 Approach
1. Identify URLs that trackers come from
2. Build rules to instruct the browser to ignore these URLs

e Example

1. Notice: https://example.org/tracking.js
2. Block: */tracking.js

https://example.org/tracking.js

URL Based Evasions

* Rotate Domains
- Domain generation algorithms (DGA)
- Host on CDNs

e Move to First Party
Sites host local copies of tracking code

e Compose with “benign” code
- Concatenate into one single file
- Magnification / packing / browserify / require.js / etc.

Behavior Based Blocking

* Representative Extension
PrivacyBadger

e Approach
1. Look for code that does suspicious things
2. Block or restrict similar code

e Example

1. Notice script from tracker.com uses Canvas and
WebGL oddly

2. Prevent all code from tracker.com from accessing any
privacy sensitive functionality

http://tracker.com
http://tracker.com

Behavior Based Evasions

e Rotate Domains
- Domain generation algorithms (DGA)
- Host on CDNs

e Split Suspicious Activity Across Parties
Avoid detection thresholds by distributing activity

 Evade Attribution
- eval
- new Function()
- Promise.then()
- etc...

AdGraph Alternative

 Blocking tracking resources
JS, tracking pixels, iFrames...

e Deep browser instrumentation
- Network: requests made during page execution
- Layout: page structure and modifications
- JavaScript: attribute above to responsible code

e Block based on context
ML classification based on above described context

Common JS Example

. Script element with inline code, that...

. Appends a script element after itself, with remote script,
that...

. Reads document cookies (and other FP elements),
creates an adjacent image, and then...

. Fetches images from unknown URLs

AdGraph Example

AdGraph Example

AdGraph Example

AdGraph Example

Append Element:

<script>

Attribute Modification:
src=<url>

AdGraph Example

Append Element:

<script>

Attribute Modification:

src=<url> :
Fetch: Script
<url> Resource

AdGraph Example

Append Element:
<script>

Attribute Modification:
src=<url>

Script
Resource

Append Element:

AdGraph Example

Append Element:
<script>

Attribute Modification:
src=<url>

Script
Resource

Append Element:

Attribute Modification:
src=<url>

AdGraph Example

Append Element:
<script>

Attribute Modification:
src=<url>

Script
Resource

Append Element:

Attribute Modification:
src=<url>

Image
Resource

AdGraph Example

Append Element:
<script>

Attribute Modification:
src=<url> :
Fetch: Script
<url> Resource

Append Element:

Classification
Information

Attribute Modification:

src=<url>
Image

Resource

AdGraph Example

Append Element:
<script>

Attribute Modification:
src=<url>

Script
Resource

Append Element:

Attribute Modification:
src=<url>

Image
Resource

Classification
Information

Attribute Modification:
src=<url>

Append Element:
<script>

Attribute Modification:
src=<url>

Append Element:

AdGraph Example

Script

Resource

Image
Resource

AdGraph Results

High accuracy
> 95% compared to current, human approaches

Strong privacy protections
|dentifies tracking resources missed by current tools

High performance
As fast or faster than current approaches (and default
Chromium!)

Not limited to lists
Can adapt as trackers adapt

Not Possible with
Extensions

* Information Breath
Needed information not
available to browser
extensions

 Information Depth
JS information not available
to other browsers!

e Performance
Blocking ML classifier
benefits from C++
Implementation

Runtime Privacy
Improvements

e AdGraph
Client-side, ML, graph-based tracking detection

e SpeedReader
Privacy enhancing content extraction
(i.e. “aggressive reader mode”)

1.03661v1 [cs.IR] 8 Nov 2018

SpeedReader: Reader Mode Made Fast and Private

Mohammad Ghasemisharif
University of Illinois at Chicago
mghas2@uic.edu

Andrius Aucinas
Brave Software
aaucinas@brave.com

ABSTRACT

Most popular web browsers include “reader modes” that improve
the user experience by removing un-useful page elements. Reader
modes reformat the page to hide elements that are not related to the
page’s main content. Such page elements include site navigation,
advertising related videos and images, and most JavaScript. The
intended end result is that users can enjoy the content they are
interested in, without distraction.

In this work, we consider whether the “reader mode” can be

widened to also provide performance and privacy improvements.

Instead of its use as a post-render feature to clean up the clutter on a
page we propose SpeedReader as an alternative multistep pipeline
that is part of the rendering pipeline. Once the tool decides during
the initial phase of a page load that a page is suitable for reader
mode use, it directly applies document tree translation before the
page is rendered.

Based on our measurements, we believe that SpeedReader can
be continuously enabled in order to drastically improve end-user
experience, especially on slower mobile connections. Combined
with our approach to predicting which pages should be rendered in
reader mode with 91% accuracy, it achieves drastic speedups and

bandwidth reductions of up to 27X and 84X respectively on average.

We further find that our novel “reader mode” approach brings
with it significant privacy improvements to users. Our approach

affacrtivalyr rermnvec all cammonllyy vecraochrnivzed fracl-ere iccotiing 115

Peter Snyder
Brave Software
pes@brave.com

Benjamin Livshits
Brave Software / Imperial College London
ben@brave.com

are large [41], they are small as a proportion of all URLs on the
web. Similarly, while these lists are updated often, they are updated
slowly compared to URL updates on the web.

Similarly, “reader mode” tools, provided in many popular
browsers and browser extensions, are an effort to reduce the grow-
ing visual complexity of web sites. Such tools attempt to extract
the subset of page content useful to users, and remove advertising,
animations, boiler plate code, and other non-core content. Current
“reader modes” do not provide the user with resource savings since
the referenced resources have already been fetched and rendered.
The growth and popularity of such tools suggest they are useful to
browser users, looking to address the problem of page clutter and
visual “bloat”.

In this work, we propose a novel strategy called SpeedReader
for dealing with resource and bloat on websites. Our technique
provides a user experience similar to existing “reader mode” tools,
but with network, performance, and privacy improvements that
exceed existing ad and tracking blocking tools, on a significant
portion of websites. Significantly, SpeedReader differs from exist-
ing deployed reader mode tools by operating before page rendering,
which allows it to determine which resources are needed for the
page’s core content before fetching.

How we achieve speedups. SpeedReader achieves its perfor-
mance improvements through a two-step pipeline:

o L - - .

SpeedReader

* Prevent tracking resources
JS, tracking pixels, iFrames...

* Most of a page isn’t immediately useful
- Boilerplate: navigation, you might like...
- Third party ads: often undesirable, offensive, or both
- JavaScript: animations and distractions

 Extract good content, don’t block bad content
Focus on identifying the valuable parts of the page, not
the harmful ones

Existing Reader Modes

Extract
—> Browser ad Render Page gd Main Text and [gg
Image

Present Reader
Mode Version

Main
Image

SpeedReader

Server — Browser

Display as
normal

If No...

Determine if

ad Initial HTML is
Readable Extract
Main Text and Present Reader
Image from Mode Version
If Yes... HTML

Main
Image

SpeedReader Results

Comparison of SpeedReader to standard browsing on a large sample of websites.

3rd Party 3rd Party Scripts Scripts Ads and Ads and
(Avg) (Median) (Avg) (Median) Trackers Trackers
(Avg) (Median)

Default

SpeedReader

Not Possible with
Extensions

* Access Restrictions
Most browser’s don’t allow extensions to modify pages

* Performance
ML classifier benefits from C++ implementation

Outline

1. Background
Extension focus in practical privacy tools

2. Present
Privacy improvements require deep browser modifications

3. Next Steps
Call to action, how to keep improving

Privacy concern

Unclaimed Space

Browser maintenance experience

Better Privacy is Possible

* New Browser Vendors
The “big four” aren’t the only game in town anymore

e Many New Browsers are Privacy Focused
Privacy as top-level goal, willing to be aggressive

e Eager to Collaborate
The new browsers are willing and interested to develop and
maintain ambitious privacy protecting browser changes.

e Reach Out!
Peter Snyder, Privacy Researcher
pes@brave.com — @pes10k

