
Yao’s Garbled Circuits
Recent Directions and Implementations

Pete Snyder



Outline
1. Context 

2. Security definitions 

3. Oblivious transfer 

4. Yao’s original protocol 

5. Security improvements 

6. Performance improvements 

7. Implementations 

8. Conclusion



Outline
1. Context!

2. Security definitions 

3. Oblivious transfer 

4. Yao’s original protocol 

5. Security improvements 

6. Performance improvements 

7. Implementations 

8. Conclusion



1. Context for Yao’s Protocol

• Secure function evaluation 

• Computing functions with hidden inputs 

• “Millionaires’ problem”



Yao and SFE

• Initially only considered theoretically interesting 

• Later became focus of practical work 

• Yao never published protocol



Outline
1. Context 

2. Security definitions!

3. Oblivious transfer 

4. Yao’s original protocol 

5. Security improvements 

6. Performance improvements 

7. Implementations 

8. Conclusion



2. Definitions and 
Assumptions

• Properties of a “secure” SFE protocol 

• Adversary models



2.1. SFE Properties

• Could try to fully define what a SFE system can and 
cannot leak 

• Might quickly devolve into long arbitrary lists 

• Instead, compare a solution to a best-possible 3rd 
party / ideal - oracle



Ideal Oracle
P3 
 

u ← ƒ(ip1, ip2)

P1 P2

ip1 ip2

u u



Validity

• A SFE protocol must provide 
the same result as an ideal 
oracle 

• Does not require: 

• correct answer 

• any answer at all

P3 
 

P1 P2



Privacy

• A SFE protocol must not allow 
parties to learn more about 
each other’s inputs than they 
would with an ideal oracle 

• Does not require: 

• That parties cannot learn 
inputs 

• ex: integer multiplication 

P3 
 

P1 P2



Fairness

• A SFE protocol must not allow 
one party to learn result while 
keeping it from the other. 

• Tricky…

P3 
 

P1 P2



2.2. Adversary Models

Semi-Honest Malicious

• Follows protocol 

• Will take advantage  
where allowed 

• Has transcript of  
entire protocol

• Arbitrarily deviates 
from protocol 

• Will take any  
beneficial actions 

• More “real-world”



Outline
1. Context 

2. Security definitions 

3. Oblivious transfer!

4. Yao’s original protocol 

5. Security improvements 

6. Performance improvements 

7. Implementations 

8. Conclusion



3. Oblivious transfer

• What is oblivious transfer 

• Simple protocol



What is Oblivious Transfer

• OTs is category of 2-party protocols 

• P1 has some values 

• P2 learns some values but not others 

• P1 doesn’t know what P2 learns 

• Yao’s protocol builds on OT



1-out-of-2 Oblivious Transfer
!

• P1: S = {s0, s1} 

• P2: i ∈ {0, 1}

!

• P1: Nothing 

• P2: Si  but not Si-1 

Inputs Receives



Example OT Protocol
P1 S = {s0, s1}

P2 i ∈ {0, 1}

(kpub, kprv), (k⊥, ⊥)P2

P2 kpub = kpub, kpub = k⊥
i i-1

P1 ci = E    (si), ci-1 = E    (si-1)kpub
i

kpub
i-1

P2 si = D   (ci), ⊥ = D (ci-1)kpri ⊥



Outline
1. Context 

2. Definitions and assumptions 

3. Oblivious transfer 

4. Yao’s original protocol!

5. Security improvements 

6. Performance improvements 

7. Implementations 

8. Conclusion



4. Yao’s Protocol

• “Intuitive” description (hopefully…) 

• Detailed description



Yao’s Garbled Circuits
1. P1 and P2 want to securely compute ƒ 

2. P1: Creates circuit representation of ƒ 

3. P1: “garbles” the circuit so that P2 can execute the 
circuit, but not learn intermediate values 

4. P1: Sends P2 the garbled circuit and his garbled input 
bits 

5. P2: Uses OT to receive P2’s input bits 

6. P2: Evaluates circuit



1. Generating equivalent 
boolean circuit for the function

• Create circuit c such that ∀x, y -> ƒ(x, y) = c(x, y)  

• Beyond this talk (compiler theory, etc.) 

• Implementations use domain specific high level 
languages



2. Garbling the circuit
• Goal is to allow P2 to compute circuit w/o knowing 

intermediate values of circuit 

• Garbling means mapping binary values to 
encryption keys, and encrypting outputs of gates 

• Pre-garbling: Gates are {0, 1} × {0, 1} → {0, 1} 

• Post-garbling: ƒ({0, 1}|k|, {0, 1}|k|) → {0, 1}|k| 



Preparing one gate



3. Garbling P1’s Input

• P1 has garbled circuit 

• P1 has original ip1 

• P2 has original ip2 

• Circuit only contains garbled / mapped values



Garbling ip1

w 0

w 1

w 1

w 0

Original ip1

w k

w k

w k

w k

Garbled ip1

Circuit Lookup

0

0

1

1



4. Garbling P2’s input

• P2 has garbled circuit, garbled ip1, original ip2 

• P1 has mappings boolean → garbled mappings 

• To compute circuit, P2 needs garbled input values



Garbling ip2

P2

0 1

w k k

w k k

w k k

w k k

0

0

0

0

1

1

1

1

P1

i garbled

w 0 ?

w 0 ?

w 1 ?

w 0 ?



Garbling ip2

P2

0 1

w k k

w k k

w k k

w k k

0

0

0

0

1

1

1

1

P1

i garbled

w 0 ?

w 0 ?

w 1 ?

w 0 ?

1-out-of-2 OT

i = 0N = {k2, k2}0 1



Garbling ip2

P2

0 1

w k k

w k k

w k k

w k k

0

0

0

0

1

1

1

1

P1

i garbled

w 0 k

w 0 ?

w 1 ?

w 0 ?

1-out-of-2 OT

k2
0

0



5. Computing the circuit
• P2: Garbled circuit, ip1, ip2 

• P2: Tries each row in table to 
see what key the inputs unlock

Assume P1’s input is 1  
and P2’s input is 0 → ⊥

→
→ ⊥



Outline
1. Context 

2. Security definitions 

3. Oblivious transfer 

4. Yao’s original protocol 

5. Security improvements!

6. Performance improvements 

7. Implementations 

8. Conclusion



5. Security improvements
• Yao is only secure against semi-honest adversaries 

• Areas for improvement 

1. Securing oblivious transfer 

2. Securing circuit construction 

3. Securing against corrupt inputs 

• Remaining issues…



Securing oblivious transfer
• Problem with existing implementation: 

• Initially P2 generates (kpub, kprv), (k⊥, ⊥) 

• P1 can’t verify that P2 holds only one private key 

• P2 can learn garbled values of 0 and 1 bits for 
P2’s input wires 

• Allows for violations of privacy SFE principal in 
malicious case



Securing oblivious transfer

• Solution:  

• P2 needs to provably bind itself from being able 
to decrypt both sent values 

• P1 still cannot learn P2’s selected value



Securing oblivious transfer

P1 P2ℤq, generator g *

• Selects C ∈ ℤq such 
that P2 does not know  
discrete log of C  
 
 

• Verifies that βi*βi-1 = C 
• If so, proceed similarly  

to previous protocol

* C !
!
• Selects i ∈ {0, 1} 
• Selects xi, 0 ≤ i < q-2 
• βi = gxi, βi-1 = C*(gxi)-1 βi, βi-1



Securing circuit construction
• Problem with existing implementation: 

• P1 can construct a garbled circuit that computes 
ƒ’ instead of ƒ 

• ƒ’ could echo ip2 (or something more subtle) 

• P1 could learn P2’s input 

• Allows for violations of privacy SFE principal in 
malicious case



Securing circuit construction

• Zero-Knowledge Proofs 

• Too expensive for practical use 

• Cut-and-Choose 

• P1 garbles multiple circuits, P2 checks some 

• Cat and mouse game



Cut-and-Choose v1.0
• Uniquely garbles m versions 

of the circuit 
 
 
 

• Un-garbles selected  
circuits

 
 

• Selects m-1 circuits to 
verify 
 

• Verifies m-1 circuits are 
correct

P1 P2

m circuits

m-1 selections

m-1 revealed circuits  
ip1 for last circuit 

Protocol continues as normal



Cut-and-Choose v1.0
• Reduces P1’s chance to successfully cheat to 1/m 

• 1/m might not be enough security 

• Verifying circuits is expensive, generating circuits is 
expensive 

• Would be nice to get ≫ 1-(1/m) confidence  
for ≤ work



Cut-and-Choose v2.0
• Uniquely garbles m versions 

of the circuit 
 
 
 

• Un-garbles selected  
circuits

 
 

• Selects m/2 circuits to 
verify 
 

• Verifies m/2 circuits 

• Compute remaining m/2 
circuits, abort if differences

P1 P2

m circuits

m/2 selections

m/2 revealed circuits 
m/2 garbled inputs 

Protocol continues as normal



Cut-and-Choose v2.0
• P1 will only succeed in attack if: 

• P1 generates m/2 corrupt circuits 

• None of these m/2 circuits are among the m/2 
P2 selects to be revealed 

• P1’s chance of success is tiny… 

• But opens up a new early abort attack from P1…



Securing against  
corrupt inputs

• P1 submits malicious input in OT:  

• 0 = valid garbled bit of iP2, 1 = ⊥ 

• If P2 returns, iP2b = 0, if P2 aborts, iP2b = 1 

• P1 learns 1 bit of iP2, violating privacy SFE principal



Securing against  
corrupt inputs

• Augment circuits with s 
additional input bits leading 
into XOR gates 

• Gives P2 2s-1 ways to 
generate true desired input bit 

• P1 can still force abort, but 
learns nothing from it



Ensuring P2 
returns anything

• Fairness SFE principal requires that P2 not be able to learn 
anything P1 cannot 

• No solutions to add this assurance to Yao 

• Yao’s protocol is not fair, and so not secure, in malicious case 

• Focus on second best: ensuring that if P2 does return, result 
is correct 

• Return encrypted values that P1 has key for 

• Signature based solutions



Outline
1. Context 

2. Security definitions 

3. Oblivious transfer 

4. Yao’s original protocol 

5. Security improvements 

6. Performance improvements!

7. Implementations 

8. Conclusion



6. Performance 
improvements

• Yao’s protocol is “efficient” but expensive 

• State of the art implementation takes 8 hours to 
compute large string edit distance 

• Billions of gates, gigs or more of memory per circuit



Areas for improvement

• Communication optimizations 

• Execution optimizations 

• Circuit optimizations



Communication 
optimizations

• Recall cut-and-check requires m circuits 

• m circuits * 
billions of gates *  
4 multi byte values for each gate =  
gigabytes to terabytes of overhead 

• Can we do something about m?



Communication 
optimizations

• “Random Seed Checking” 

• Don’t randomly assign keys 

• Do so pseudo-randomly from initial random seed 

• Instead of sending m/2 verification circuits, P1 send 
commitments of circuit construction and then initial 
random seed 

• P2 reconstructs circuit from random seed and checks 
that it matches the commitment



Execution optimizations

• Fast table lookups 

• Pipelined circuit execution



Fast table lookups
→ ⊥

→
→ ⊥Assume P1’s input is 1  

and P2’s input is 0 

half index 
into next  

gate



Fast table lookups

• Two index bits (one from each input wire) uniquely 
identify rows in each gate 

• Slight increase in circuit construction cost 

• Circuit execution now only needs one decryption 
per gate, instead of on average 2



Pipelined circuit execution

• Standard version of Yao’s protocol has 

• P1 garbles, P2 waits 

• P2 evaluates, P1 waits



Standard case
P1 P2

Circuit construction

Time

Circuit evaluation

Oblivious Transfer



Pipelined circuit execution
P1 P2

Construction of input gates

Time

Circuit evaluation

Oblivious Transfer

Completing circuit construction



Circuit optimizations

• Circuit simplification 

• Free XORs 

• "Garbled row reduction”



Circuit simplification
• removing errors in the ƒ -> circuit conversion 

• Remove dead chunks of the circuit 

• Reduce sub-circuits that can be more efficiently 
represented by a smaller number of gates 

• 60% reduction in circuit size for some circuit 
constructing tools (ex Fairplay)



Free XORs

• By default all garbled values are independent 

• Take advantage of this by fixing input values to 
XOR gates with single random R 

• Replace XOR gates with an XOR function 

• Remove 4 garbled values for each XOR gate



Free XORs

P1 P2 P1 P2



Free XORs

w0 w1 w3 w4

w2 w5

w6

P1 P2 P1 P2

XOR

OR AND



w0 w1 w3 w4

w2 w5

w6

P1 P2 P1 P2

XOR

OR AND



Garbled row reduction
• Similar to free XOR trick, but saves just one row 

• Used for AND and OR gates 

• Relies on the “fast table lookups” optimization 

• Special cases garbled output value for one gate 
index, ex (0, 0) 

• key is a function of input keys



Garbled row reduction

P1 P2 P1 P2



Garbled row reduction

w0 w1 w3 w4

w2 w5

w6

P1 P2 P1 P2

AND

OR AND



Garbled row reduction

w0 w1 w3 w4

w2 w5

w6

P1 P2 P1 P2

OR AND

AND



Garbled row reduction

w0 w1 w3 w4

w2 w5

w6

P1 P2 P1 P2

OR AND

AND



Outline
1. Context 

2. Security definitions 

3. Oblivious transfer 

4. Yao’s original protocol 

5. Security improvements 

6. Performance improvements 

7. Implementations!

8. Conclusion



7. Implementations

• FairPlay (2004) 

• Huang, Evans, Katz, Malka (2011) 

• Kreuter, shelat, Shen (2012)



Year Security Largest 
Circuit Problems

Introduced 
Performance 
Optimizations

FairPlay! 2004 Semi-
Malicious 4.3k Very simple

Fast Table Lookups 
 

Performance OT 
Protocols

Huang, 
et al. 2011 Semi-Honest 1 billion Edit Distances 

AES

Free XORs 
 

Garbled Row Reduction  
 

Pipelined circuit 
execution

Kreuter, 
et al. 2012 Malcious 5.9 billion

AES 
RSA Signing 
Dot Product

Hardware optimizations 
 

Random seed checking 
 

Pipelining optimizations 
for above



Outline
1. Context 

2. Security definitions 

3. Oblivious transfer 

4. Yao’s original protocol 

5. Security improvements 

6. Performance improvements 

7. Implementations 

8. Conclusion



8. Conclusion

• Multi-party extensions for Yao 

• Performance optimizing OT protocols 

• Gateway to other areas 

• much, much, much, much more…



Mission Accomplished
Any questions?


